There is a strong relationship between fluid intelligence and working memory capacity (WMC). Yet, the cognitive mechanisms underlying this relationship remain elusive. The capacity hypothesis states that this relationship is due to limitations in the amount of information that can be stored and held active in working memory. Previous research aimed at testing the capacity hypothesis assumed that it implies stronger relationships of intelligence test performance with WMC for test items with higher capacity demands. The present article addresses this assumption through simulations of three theoretical models implementing the capacity hypothesis while systematically varying different psychometric variables. The results show that almost any relation between the capacity demands of items and their correlation with WMC can be obtained. Therefore, the assumption made by previous studies does not hold: The capacity hypothesis does not imply stronger correlations of WMC and intelligence test items with higher capacity demands. Items varying in capacity demands cannot be used to test the causality of WMC (or any other latent variable) for fluid intelligence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8367890 | PMC |
http://dx.doi.org/10.3758/s13423-021-01909-w | DOI Listing |
Adv Sci (Weinh)
January 2025
College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
Photonic manipulation of large-capacity data with the advantages of high speed and low power consumption is a promising solution for explosive growth demands in the era of post-Moore. A well-developed lithium-niobate-on-insulator (LNOI) platform has been widely explored for high-performance electro-optic (EO) modulators to bridge electrical and optical signals. However, the photonic waveguides on the x-cut LNOI platform suffer serious polarization-mode conversion/coupling issues because of strong birefringence, making it hard to realize large-scale integration.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China.
Although cytotoxic T lymphocytes (CTLs) activation combined with programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) axis blockade have emerged as an effective strategy to improve immunotherapeutic potency, it remains challenging to realize the spatiotemporal synergy of these two components. Herein, the study reports an engineered bacterial-based delivery system that can simultaneously promote CTLs infiltration and control PD-L1 binding protein (PD-L1 trap) release on demand at tumor site. The drug release button of this tumor targeting system is the specific temperature, which is accomplished by dual-modified melanin nanoparticles with photothermal conversion capacity on the engineered bacterial.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
Electrically rechargeable zinc-air batteries (ZABs) are emerging as promising energy storage devices in the post-lithium era, leveraging the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) at the air cathodes. Efficient bifunctional oxygen electrocatalysts, capable of catalyzing both the ORR and OER, are essential for the operation of rechargeable ZABs. Traditional Pt- and RuO/IrO-based catalysts are not ideal, as they lack sufficient bifunctional ORR and OER activity, exhibit limited long-term durability, require high overpotentials and are expensive.
View Article and Find Full Text PDFMater Horiz
January 2025
Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
The availability of clean water is fundamental for maintaining sustainable environments and human ecosystems. Capacitive deionization offers a cost-effective, environmentally friendly, and energy-efficient solution to meet the rising demand for clean water. Electrode materials based on pseudocapacitive adsorption have attracted significant attention in capacitive deionization due to their relatively high desalination capacity.
View Article and Find Full Text PDFIndian J Nucl Med
November 2024
Health Physics Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India.
Over the last 15 years, there has been substantial growth in the installation of medical cyclotrons. This is mainly due to the increased demand for the production of positron emission tomography radiopharmaceuticals. In every country, there is a regulatory body that regulates the uses of medical cyclotron intending to protect occupational workers, the public, and the environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!