Composite mineral-biochars of a homogeneous biomass (cellulose) and heterogeneous biomass (oak leaves) were fabricated with either 5 wt% or 10 wt% minerals (montmorillonite (MMT), kaolinite, and sand) and then pyrolyzed at 600 °C for 60 min. Characterizations including proximate analysis, ultimate analysis, surface area and porosity, morphology, and surface chemistry confirmed that minerals were present on the surface of biochar, and MMT/kaolinite-biochar composites showed a strengthening in the chars' aromatic structures, as well as increases in oxygen-containing surface functional groups. Methylene blue adsorption isotherms indicated that the MMT/kaolinite-biochars had higher adsorption capacities than pure biomass or biomass-sand biochars (110 mg/g and 24 mg/g for MMT-cellulose char and cellulose char, respectively). A multilinear model relating adsorption capacity and adsorbent properties was developed to measure the relative contribution of biochar properties to adsorption behavior. The model indicates that pore volume and hydrogen bonding were the dominant properties in controlling the adsorption of methylene blue onto the biochars. Findings from this work indicate that composite biochars prepared from biomass and inexpensive clay minerals are a promising adsorbent for remediating organic contaminants from water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-021-13858-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!