A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Computer-Aided Diagnosis of Congenital Abnormalities of the Kidney and Urinary Tract in Children Using a Multi-Instance Deep Learning Method Based on Ultrasound Imaging Data. | LitMetric

Ultrasound images are widely used for diagnosis of congenital abnormalities of the kidney and urinary tract (CAKUT). Since a typical clinical ultrasound image captures 2D information of a specific view plan of the kidney and images of the same kidney on different planes have varied appearances, it is challenging to develop a computer aided diagnosis tool robust to ultrasound images in different views. To overcome this problem, we develop a multi-instance deep learning method for distinguishing children with CAKUT from controls based on their clinical ultrasound images, aiming to automatic diagnose the CAKUT in children based on ultrasound imaging data. Particularly, a multi-instance deep learning method was developed to build a robust pattern classifier to distinguish children with CAKUT from controls based on their ultrasound images in sagittal and transverse views obtained during routine clinical care. The classifier was built on imaging features derived using transfer learning from a pre-trained deep learning model with a mean pooling operator for fusing instance-level classification results. Experimental results have demonstrated that the multi-instance deep learning classifier performed better than classifiers built on either individual sagittal slices or individual transverse slices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8040672PMC
http://dx.doi.org/10.1109/isbi45749.2020.9098506DOI Listing

Publication Analysis

Top Keywords

deep learning
20
multi-instance deep
16
ultrasound images
16
learning method
12
based ultrasound
12
diagnosis congenital
8
congenital abnormalities
8
abnormalities kidney
8
kidney urinary
8
urinary tract
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!