Small molecules efficiently reprogram apical papilla stem cells into neuron-like cells.

Exp Ther Med

Restorative Dental Sciences, Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, SAR, P.R. China.

Published: June 2021

Stem cell-based therapy may provide a novel approach for neural tissue regeneration. A small molecule cocktail-based culture protocol was previously shown to enhance neurogenic differentiation of stem cells from dental tissues. The present study aimed to investigate the early phase of small molecule-induced neurogenic differentiation of stem cells from the apical papilla (SCAP). SCAP were cultured in neural-induction medium or neural-induction medium with small molecules (NIMS-SCAP) and examined for their cell morphologies. Expression levels of neural progenitor cell-related markers, including Nestin, paired-box gene 6 (Pax6) and Sry-related HMG box 2 (Sox2), were examined using western blotting and immunocytofluorescence. Expression of differentiated neuron-related markers, including neurofilament protein (NFM), neuron-specific nuclear protein (NeuN) and microtubule-associated protein (MAP)-2, were also examined using western blotting, while NFM and MAP2 gene expression and cell proliferation were assessed using reverse transcription-quantitative (RT-q)PCR and Cell Counting Kit (CCK)-8 assays, respectively. SCAP morphology was affected by small molecules after as little as 30 min. Specifically, Nestin, Pax6 and Sox2 expression detected using western blotting was increased by day 3 but then decreased over the course of 7 days with neural induction, while immunocytofluorescence revealed expression of all three markers in NIMS-SCAP. The protein levels of NFM, NeuN and MAP2 on day 7 were significantly upregulated in NIMS-SCAP, as detected using western blotting, while NFM and MAP2 gene expression levels detected using RT-qPCR were significantly increased on days 5 and 7. Proliferation of NIMS-SCAP ceased after 5 days. Electrophysiological analysis showed that only SCAP cultured in NIMS had the functional activity of neuronal cells. Thus, small molecules reprogrammed SCAP into neural progenitor cells within the first 3 days, followed by further differentiation into neuron-like cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8027758PMC
http://dx.doi.org/10.3892/etm.2021.9978DOI Listing

Publication Analysis

Top Keywords

small molecules
16
western blotting
16
stem cells
12
apical papilla
8
neuron-like cells
8
neurogenic differentiation
8
differentiation stem
8
scap cultured
8
neural-induction medium
8
expression levels
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!