Aim And Objective: This case report shows how a feldspathic veneer with diagnostic wax-ups, subsequent mock-up, and reduction guides can lead to good patient esthetics and reports a 5-year follow-up.
Background: Conservative tooth preparation is important for the long-term success of adhesive dentistry as it has been shown that bonding to enamel is more predictable in obtaining better long-term success than dentin. To preserve enamel for optimal bonding, diagnostic wax-ups and the subsequent mock-up are the first tools in a restorative dentist's arsenal to find and address differences between current and ideal tooth proportions and also help toward an overall conservative approach. Reduction guides are recommended in order to provide adequate tooth reduction and prevent over-reduction.
Case Description: This case report shows a 5-year follow-up of feldspathic veneer restorations for a patient with excessive space among teeth, defective composite restorations on facial and incisal surfaces, and worn teeth. Veneers were delivered with conservative tooth preparation combining different tooth reduction guides.
Conclusion: This case report highlights the added benefits of tooth reduction guides and diagnostic wax-ups and the subsequent mock-up for long-term patient satisfaction.
Clinical Significance: Conservative tooth preparation, reduction guides, and wax-ups may increase the life span of veneer restorations and demonstrate good esthetics at 5 years.
Download full-text PDF |
Source |
---|
Background: The adjunctive use of connective tissue grafts (CTGs) in the periodontal regeneration of intrabony defects has been proposed to prevent or limit postoperative gingival recession. However, there is limited evidence regarding the long-term clinical performance of this approach.
Methods: This article presents the five-year follow-up outcomes of a combination therapy using CTG, bone substitutes, and biologics for the treatment of deep intrabony defects associated with gingival recession.
In Vitro Cell Dev Biol Anim
January 2025
College of Traditional Chinese Medicine, Xinjiang Uygur Autonomous Region, Xinjiang Medical University, Urumqi, 830063, China.
The aim of this study is to assess the impact of Tianxiangdan (TXD) on lipophagy in foam cells and its underlying mechanism in treating atherosclerosis, particularly focusing on its efficacy in lowering blood lipids. In vivo, ApoE-/- atherosclerosis mouse models were established for group intervention. Blood lipid levels of the mice were measured, lipid deposition and autophagy levels in atherosclerotic plaques were assessed, and co-localization of lipid droplets and autophagosomes was examined.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Natural Resource Management, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia.
Assessing the impacts of forest cover change on carbon stock and soil moisture dynamics is critical for understanding environmental degradation and guiding sustainable land management. This study evaluates the effects of forest cover change on carbon stock and soil moisture dynamics in Nensebo Forest from 1993 to 2023 using geospatial techniques. Landsat imagery including TM (1993), ETM + (2009), and OLI/TIRS (2023) were used.
View Article and Find Full Text PDFStrahlenther Onkol
January 2025
Department of Radiation Oncology, Radboud university medical center, Nijmegen, The Netherlands.
Purpose: This study focused on reducing the margin for prostate cancer treatment using magnetic resonance imaging-guided radiotherapy by investigating the intrafractional motion of the prostate and different motion-mitigation strategies.
Methods: We retrospectively analyzed intrafractional prostate motion in 77 patients with low- to intermediate-risk prostate cancer treated with five fractions of 7.25 Gy on a 1.
J Chem Phys
January 2025
Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, USA.
This study investigates the impact of structural isomerism on the excited state lifetime and redox energetics of heteroleptic [Ir(ppy)2(bpy)]+ and homoleptic Ir(ppy)3 photoredox catalysts using ground-state and time-dependent density functional theory methods. While the ground- and excited-state reduction potentials differ only slightly among the isomers of these complexes, our findings reveal significant variations in the radiative and non-radiative decay rates of the reactivity-controlling triplet 3MLCT states of these closely related species. The observed differences in radiative decay rates could be traced back to variations in the transition dipole moment, vertical energy gaps, and spin-orbit coupling of the isomers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!