Background: Dinoflagellates in the family Symbiodiniaceae are important photosynthetic symbionts in cnidarians (such as corals) and other coral reef organisms. Breakdown of the coral-dinoflagellate symbiosis due to environmental stress (i.e. coral bleaching) can lead to coral death and the potential collapse of reef ecosystems. However, evolution of Symbiodiniaceae genomes, and its implications for the coral, is little understood. Genome sequences of Symbiodiniaceae remain scarce due in part to their large genome sizes (1-5 Gbp) and idiosyncratic genome features.
Results: Here, we present de novo genome assemblies of seven members of the genus Symbiodinium, of which two are free-living, one is an opportunistic symbiont, and the remainder are mutualistic symbionts. Integrating other available data, we compare 15 dinoflagellate genomes revealing high sequence and structural divergence. Divergence among some Symbiodinium isolates is comparable to that among distinct genera of Symbiodiniaceae. We also recovered hundreds of gene families specific to each lineage, many of which encode unknown functions. An in-depth comparison between the genomes of the symbiotic Symbiodinium tridacnidorum (isolated from a coral) and the free-living Symbiodinium natans reveals a greater prevalence of transposable elements, genetic duplication, structural rearrangements, and pseudogenisation in the symbiotic species.
Conclusions: Our results underscore the potential impact of lifestyle on lineage-specific gene-function innovation, genome divergence, and the diversification of Symbiodinium and Symbiodiniaceae. The divergent features we report, and their putative causes, may also apply to other microbial eukaryotes that have undergone symbiotic phases in their evolutionary history.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8045281 | PMC |
http://dx.doi.org/10.1186/s12915-021-00994-6 | DOI Listing |
Microorganisms
December 2024
School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, NO.2 Dagong Road, Panjin 124221, China.
The increasing prevalence of harmful algal blooms (HABs) driven by eutrophication, particularly in China's nearshore waters, is a growing concern. Dinoflagellate blooms have caused significant ecological and economic damage, as well as mass mortality, in cultivated species. Nutrients are one of the primary inducers of blooms.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA.
Symbioses are major drivers of organismal diversification and phenotypic innovation. However, how long-term symbioses shape whole genome evolution in metazoans is still underexplored. Here, we use a giant clam (Tridacna maxima) genome to demonstrate how symbiosis has left complex signatures in an animal's genome.
View Article and Find Full Text PDFMicrobiol Resour Announc
December 2024
Graduate School of Engineering, Osaka University, Suita, Japan.
A Flavobacteriaceae sp. strain GF1 was isolated from an endosymbiotic dinoflagellate of a coral, and the genome was sequenced using a PacBio Sequel IIe system. The genome consists of a circular 5,300,001 bp chromosome and is predicted to harbor 6 rRNA genes, 42 tRNA genes, and 4,465 coding sequences.
View Article and Find Full Text PDFMicrobiol Resour Announc
December 2024
Department of Biology and Viral Information Institute, San Diego State University, San Diego, California, USA.
Here, we report the draft genome sequences of sp. MMG031 and sp. MMG032, isolated from coral-associated dinoflagellate , assembled and analyzed by undergraduate students participating in a Marine Microbial Genomics (MMG) course.
View Article and Find Full Text PDFFree Radic Biol Med
November 2024
Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy. Electronic address:
Sulfoxide synthase OvoA is the key enzyme involved in the biosynthesis of ovothiols (OSHs), secondary metabolites endowed with unique antioxidant properties. Understanding the evolution of such enzymes and the diversity of their metabolites should reveal fundamental mechanisms governing redox signaling and environmental adaptation. "Early-branching" animals such as Cnidaria display unique molecular diversity and symbiotic relationships responsible for the biosynthesis of natural products, however, they have been neglected in previous research on antioxidants and OSHs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!