Mechanism of REST/NRSF regulation of clustered protocadherin α genes.

Nucleic Acids Res

Center for Comparative Biomedicine, MOE Key Laboratory of Systems Biomedicine, State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.

Published: May 2021

Repressor element-1 silencing transcription factor (REST) or neuron-restrictive silencer factor (NRSF) is a zinc-finger (ZF) containing transcriptional repressor that recognizes thousands of neuron-restrictive silencer elements (NRSEs) in mammalian genomes. How REST/NRSF regulates gene expression remains incompletely understood. Here, we investigate the binding pattern and regulation mechanism of REST/NRSF in the clustered protocadherin (PCDH) genes. We find that REST/NRSF directionally forms base-specific interactions with NRSEs via tandem ZFs in an anti-parallel manner but with striking conformational changes. In addition, REST/NRSF recruitment to the HS5-1 enhancer leads to the decrease of long-range enhancer-promoter interactions and downregulation of the clustered PCDHα genes. Thus, REST/NRSF represses PCDHα gene expression through directional binding to a repertoire of NRSEs within the distal enhancer and variable target genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8096226PMC
http://dx.doi.org/10.1093/nar/gkab248DOI Listing

Publication Analysis

Top Keywords

mechanism rest/nrsf
8
clustered protocadherin
8
neuron-restrictive silencer
8
gene expression
8
rest/nrsf
5
rest/nrsf regulation
4
regulation clustered
4
genes
4
protocadherin genes
4
genes repressor
4

Similar Publications

Evolution of diapause in the African turquoise killifish by remodeling the ancient gene regulatory landscape.

Cell

June 2024

Department of Genetics, Stanford University, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA. Electronic address:

Suspended animation states allow organisms to survive extreme environments. The African turquoise killifish has evolved diapause as a form of suspended development to survive a complete drought. However, the mechanisms underlying the evolution of extreme survival states are unknown.

View Article and Find Full Text PDF

The mechanisms by which brain insults lead to subsequent epilepsy remain unclear. Insults including trauma, stroke, infections, and long seizures (status epilepticus, SE) increase the nuclear expression and chromatin binding of the neuron-restrictive silencing factor/RE-1 silencing transcription factor (NRSF/REST). REST/NRSF orchestrates major disruption of the expression of key neuronal genes, including ion channels and neurotransmitter receptors, potentially contributing to epileptogenesis.

View Article and Find Full Text PDF

Epigenetic regulation in epilepsy: A novel mechanism and therapeutic strategy for epilepsy.

Neurochem Int

February 2024

Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China. Electronic address:

Epilepsy is a common neurological disorder characterized by recurrent seizures with excessive and abnormal neuronal discharges. Epileptogenesis is usually involved in neuropathological processes such as ion channel dysfunction, neuronal injury, inflammatory response, synaptic plasticity, gliocyte proliferation and mossy fiber sprouting, currently the pathogenesis of epilepsy is not yet completely understood. A growing body of studies have shown that epigenetic regulation, such as histone modifications, DNA methylation, noncoding RNAs (ncRNAs), N6-methyladenosine (m6A) and restrictive element-1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) are also involved in epilepsy.

View Article and Find Full Text PDF

REST Is Not Resting: REST/NRSF in Health and Disease.

Biomolecules

October 2023

Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China.

Chromatin modifications play a crucial role in the regulation of gene expression. The repressor element-1 (RE1) silencing transcription factor (REST), also known as neuron-restrictive silencer factor (NRSF) and X2 box repressor (XBR), was found to regulate gene transcription by binding to chromatin and recruiting chromatin-modifying enzymes. Earlier studies revealed that REST plays an important role in the development and disease of the nervous system, mainly by repressing the transcription of neuron-specific genes.

View Article and Find Full Text PDF

Neonatal exposure to decabromodiphenyl ether (PBDE-209), a widely used flame retardant, affects cognitive performances in the later stage of life in a sex-dependent manner. PBDE-209 interferes with glutamatergic signaling and N-methyl-D-aspartate receptor (NMDAR) subunits with unresolved regulatory mechanisms. This study exposed male and female mice pups through postnatal day (PND) 3-10 to PBDE-209 (oral dose: 0, 6, or 20 mg/kg body weight).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!