The agaric-like anodes of porous carbon decorated with MoO nanoparticles (MoO/C) for reversible Li/Na storage were synthesized via a green and facile bio-inspired route. The uniformly distributed MoO nanoparticles, the porous agaric-like carbon matrix and high degree graphitization of carbon materials, effectively mitigated the huge volume changes during cycling and improved the reversible capacity, resulting in the outstanding electrochemical behaviors with excellent rate capability, high capacity and excellent stable long cycling lifespan as anodes for lithium and sodium storage. Especially, the MoO/C electrodes showed ultralong cycling performance under high current density of 5.0 A g, presenting a reversible capacity of 363.2 mAh g after a prolonged 2000-cycles as anodes for Li storage. Meanwhile, the MoO/C electrodes displayed a super-long cycling lifespan of 3000 cycles with the reversible discharge capacity of 193.5 mAh g at the current density of 5.0 A g for Na storage. Furthermore, the kinetic analysis of MoO/C-4 electrodes as anodes for Li/Na storage was carried out to further investigate the electrochemical behavior. The ultralong cycling performance under high-density could satisfy the demands of next-generation anode electrodes for Li/Na ion batteries, promoting the commercialization process of MoO-based materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2021.03.149 | DOI Listing |
Anal Chim Acta
February 2025
School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:
Background: Estriol (E3) is a common estrogen responsible for regulating the female reproductive system, but excessive amount can pose health risks to humans and wild life. Therefore, sensitive and accurate detection of estriol level is crucial. A novel competitive ECL immunosensor based on a dual signal amplification strategy of AuNPs@GO@SmMoSe and Gd(MoO) was fabricated for ultrasensitive detection of estriol.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China. Electronic address:
Developing efficient catalysts to enhance photoreduction carbon dioxide (CO) into hydrocarbon fuels is a great challenge. As metallic material, molybdenum dioxide (MoO) has very high conductivity and charge density, which make it a promising candidate as photocatalyst. However, its photocatalytic activity is limited by the serious charge recombination.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.
Chemphyschem
December 2024
Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Pa Yup Nai, Wang Chan, Rayong, 21210, Thailand.
To date, preparing materials with highly dispersed metal nanoparticles without metal agglomeration on a solid support is challenging. This work presents an alternative approach for synthesizing NiCo species on hierarchical ZSM-5 materials derived from a ZSM-5@NiCoAl-LDHs composite. The designed material was prepared by the growth of a NiCo-layered double hydroxides (LDHs) precursor on the surface of hierarchical ZSM-5 nanosheets.
View Article and Find Full Text PDFChemistry
December 2024
Xi'an University, Xi'an, 710065, P. R. China.
Obtaining a robust electrode composed of Sn-based metal oxides and carbonaceous matrix through nanoscale structure engineering is essential for effectively improving Li-ion batteries' electrochemical performance and stability. Herein, we report a bimetallic MoO-xSnO/Sn nanoparticles uniformly anchored on N, S co-doped graphene nanosheets (MoO-xSnO/Sn@NSG) as an anode electrode for Li-ion battery via a one-step hydrothermal and thermal treatment approach. In the MoO-xSnO/Sn nanocomposite, the generated Sn-O-Mo bond can modulate the electronic and composition structures to improve the intrinsic conductivity of SnO and reinforce the structural stability during cycles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!