An introduced host plant alters circadian activity patterns of a rhinoceros beetle.

Ecology

Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-City, Yamaguchi, Japan.

Published: September 2021

Download full-text PDF

Source
http://dx.doi.org/10.1002/ecy.3366DOI Listing

Publication Analysis

Top Keywords

introduced host
4
host plant
4
plant alters
4
alters circadian
4
circadian activity
4
activity patterns
4
patterns rhinoceros
4
rhinoceros beetle
4
introduced
1
plant
1

Similar Publications

SiO-Mediated Hydrothermal Synthesis of Spiroffite-Type CoTeO.

Inorg Chem

January 2025

Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States.

The hydrothermal synthesis of novel materials typically relies on both knowledge of the redox activities of all cations present in the reaction solution and a small toolset of so-called mineralizers to tune the solution's overall chemical potential. Upon the use of a less conventional mineralizer species, SiO, we show the stabilization of spiroffite-type CoTeO under less forceful hydrothermal conditions than those in previous reports. When synthesized in the presence of both SiO and each respective alkali carbonate as a secondary mineralizer, silicon substitution in place of tellurium in the host structure becomes apparent, and the corresponding disorder introduced gives rise to enhanced low-temperature ferromagnetism.

View Article and Find Full Text PDF

Characterization of a novel D-sorbitol dehydrogenase from Faunimonas pinastri A52C2.

Appl Microbiol Biotechnol

January 2025

Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.

The enzyme D-sorbitol dehydrogenase (SLDH) facilitates the conversion of D-sorbitol to L-sorbose. While current knowledge of this enzyme class predominantly centers on Gluconobacter oxydans, the catalytic properties of enzymes from alternative sources, particularly their substrate specificity and coenzyme dependency, remain ambiguous. In this investigation, we conducted BLASTp analysis and screened out a novel SLDH (Fpsldh) from Faunimonas pinastri A52C2.

View Article and Find Full Text PDF

Unlabelled: Metatranscriptome (MetaT) sequencing is a critical tool for profiling the dynamic metabolic functions of microbiomes. In addition to taxonomic information, MetaT also provides real-time gene expression data of both host and microbial populations, thus permitting authentic quantification of the functional (enzymatic) output of the microbiome and its host. The main challenge to effective and accurate MetaT analysis is the removal of highly abundant rRNA transcripts from these complex mixtures of microbes, which can number in the thousands of individual species.

View Article and Find Full Text PDF

Brain metastases (BrMets), common for advanced-stage breast cancer patients, are associated with poor median survival and accompanied by severe neurologic decline. Halting the progression of breast cancer brain metastases (BCBMs) may require modulation of the tumor microenvironment (TME), yet little is known about the impact of the primary breast TME on brain tropism, or how, once there, metastatic breast cancer cells coexist with brain-resident cells (e.g.

View Article and Find Full Text PDF

Heat-Assisted Direct Photopatterning of Small-Molecule OLED Emitters at the Micrometer Scale.

Small Methods

January 2025

Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea.

A crucial step in fabricating full-color organic light-emitting diode (OLED) displays is patterning the emissive layer (EML). Traditional methods utilize thermal evaporation through metal masks. However, this limits the achievable resolution required for emerging microdisplay technologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!