We introduce a method of recovering the shape of a smooth dielectric object using diffuse polarization images taken with different directional light sources. We present two constraints on shading and polarization and use both in a single optimization scheme. This integration is motivated by photometric stereo and polarization-based methods having complementary abilities. Polarization gives strong cues for the surface orientation and refractive index, which are independent of the light direction. However, employing polarization leads to ambiguities in selecting between two ambiguous choices of the surface orientation, in the relationship between the refractive index and zenith angle (observing angle). Moreover, polarization-based methods for surface points with small zenith angles perform poorly owing to the weak polarization. In contrast, the photometric stereo method with multiple light sources disambiguates the surface normals and gives a strong relationship between surface normals and light directions. However, the method has limited performance for large zenith angles and refractive index estimation and faces strong ambiguity when light directions are unknown. Taking the advantages of these methods, our proposed method recovers surface normals for small and large zenith angles, light directions, and refractive indexes of the object. The proposed method is positively evaluated in simulations and real-world experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2021.3072656DOI Listing

Publication Analysis

Top Keywords

surface normals
16
light directions
16
zenith angles
12
normals light
8
shading polarization
8
light sources
8
photometric stereo
8
polarization-based methods
8
surface orientation
8
large zenith
8

Similar Publications

Lithium-ion batteries represent a significant component of the field of energy storage, with a diverse range of applications in consumer electronics, portable devices, and numerous other fields. In view of the growing concerns about the safety of batteries, it is of the utmost importance to develop a sensor that is capable of accurately monitoring the internal temperature of lithium-ion batteries. External sensors are subject to the necessity for additional space and ancillary equipment.

View Article and Find Full Text PDF

Mesoscale eddies are pivotal oceanographic phenomena affecting marine environments. Accurate and stable identification of these eddies is essential for advancing research on their dynamics and effects. Current methods primarily focus on identifying Cyclonic and Anticyclonic eddies (CE, AE), with anomalous eddy identification often requiring secondary analyses of sea surface height anomalies and eddy center properties, leading to segmented data interpretations.

View Article and Find Full Text PDF

The advent of millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems, coupled with reconfigurable intelligent surfaces (RISs), presents a significant opportunity for advancing wireless communication technologies. This integration enhances data transmission rates and broadens coverage areas, but challenges in channel estimation (CE) remain due to the limitations of the signal processing capabilities of RIS. To address this, we propose an adaptive channel estimation framework comprising two algorithms: log-sum normalized least mean squares (Log-Sum NLMS) and hybrid normalized least mean squares-normalized least mean fourth (Hybrid NLMS-NLMF).

View Article and Find Full Text PDF

Sustainable CO Capture: N,S-Codoped Porous Carbons Derived from Petroleum Coke with High Selectivity and Stability.

Molecules

January 2025

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.

CO capture from the flue gas is a promising approach to mitigate global warming. However, regulating the carbon-based adsorbent in terms of textural and surface modification is still a challenge. To overcome this issue, the present study depicts the development of cost-effective and high-performance CO adsorbents derived from petroleum coke, an industrial by-product, using a two-step process involving thiourea modification and KOH activation.

View Article and Find Full Text PDF

Effect of Eight-Week Transcranial Direct-Current Stimulation Combined with Lat Pull-Down Resistance Training on Improving Pull-Up Performance for Male College Students.

Life (Basel)

January 2025

Sport and Health Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Physical Education Department, Tongji University, Shanghai 200092, China.

The aim of this study was to investigate the effects and potential mechanisms of 8-week transcranial direct-current stimulation (tDCS) combined with resistance training (RT) on pull-up performance in male college students. Twenty-five male college students were randomly assigned to either RT combined with anodal tDCS stimulation (RT + tDCS) or RT alone (RT). Participants of both groups engaged in lat pull-down training programs for 8 weeks, with the RT + tDCS group receiving 20 min tDCS before each RT session.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!