We investigated the relationship between grain boundary (GB) oxidation of Cu-Ag thin-film catalysts and selectivity of the (photo)electrochemical CO reduction reaction (CO RR). The change in the thickness of the Cu thin film accompanies the variation of GB density, and the Ag layer (3 nm) has an island-like morphology on the Cu thin film. Therefore, oxygen from ambient air penetrates into the Cu thin film through the GB of Cu and binds with it because the uncoordinated Cu atoms at the GBs are unstable. It was found that the Cu thin film with a small grain size was susceptible to spontaneous oxidation and degraded the faradaic efficiency (FE) of CO and CH. However, a relatively thick (≥80 nm) Cu layer was effective in preventing the GB oxidation and realized catalytic properties similar to those of bulk Cu-Ag catalysts. The optimized Cu (100 nm)-Ag (3 nm) thin film exhibited a unique bifunctional characteristic, which enables selective production of both CO (FE = 79.8%) and CH (FE = 59.3%) at a reductive potential of -1.0 and -1.4 , respectively. Moreover, the Cu-Ag thin film was used as a cocatalyst for photo-electrochemical CO reduction by patterning the Cu-Ag thin film and a SiO passivation layer on a p-type Si photocathode. This novel architecture improved the selectivity of CO and CH under light illumination (100 mW/cm).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c03735 | DOI Listing |
Sensors (Basel)
January 2025
Research and Development Center of Optoelectronic Hybrid IC, Guangdong Greater Bay Area Institute of Integrated Circuit and System, Guangzhou 510535, China.
Short-wave infrared (SWIR) imaging has a wide range of applications in civil and military fields. Over the past two decades, significant efforts have been devoted to developing high-resolution, high-sensitivity, and cost-effective SWIR sensors covering the spectral range from 0.9 μm to 3 μm.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
Biocompatible materials fabricated from natural protein polymers are an attractive alternative to conventional petroleum-based plastics. They offer a green, sustainable fabrication method while also opening new applications in biomedical sciences. Available from several sources in the wild and on domestic farms, silk is a widely used biopolymer and one of the strongest natural materials.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Physics, Changwon National University, Changwon 51140, Republic of Korea.
A mechanically robust flexible transparent conductor with high thermal and chemical stability was fabricated from welded silver nanowire networks (w-Ag-NWs) sandwiched between multilayer graphene (MLG) and polyimide (PI) films. By modifying the gas flow dynamics and surface chemistry of the Cu surface during graphene growth, a highly crystalline and uniform MLG film was obtained on the Cu foil, which was then directly coated on the Ag-NW networks to serve as a barrier material. It was found that the highly crystalline layers in the MLG film compensate for structural defects, thus forming a perfect barrier film to shield Ag NWs from oxidation and sulfurization.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 400044, China.
The electrodes of thin film transistors (TFTs) have evolved from conventional single Cu layers to multi-layered structures formed by Cu and other metals or alloys. Different etching rates of various metals and galvanic corrosion between distinct metals may cause etching defects such as rough or uneven cross-sectional surfaces of stacked electrodes. Therefore, the etching of stacked electrodes faces new challenges.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Laboratory of Electronic Processes, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania.
The experimental and theoretical study of photovoltage formation in perovskite solar cells under pulsed laser excitation at 0.53 μm wavelength is presented. Two types of solar cells were fabricated on the base of cesium-containing triple cation perovskite films: (1) Cs(FAMA)Pb(IBr) and (2) Cs(FAMA)PbSn(IBr).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!