Cytokine signaling convergence regulates the microglial state transition in Alzheimer's disease.

Cell Mol Life Sci

Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.

Published: May 2021

Genetic analyses have revealed the pivotal contribution of microglial dysfunctions to the pathogenesis of Alzheimer's disease (AD). Along AD progression, the accumulation of danger-associated molecular patterns (DAMPs) including beta-amyloid and hyperphosphorylated tau continuously stimulates microglia, which results in their chronic activation. Chronically activated microglia secrete excessive pro-inflammatory cytokines, which further regulate microglial responses towards DAMPs. This has spurred longstanding interest in targeting cytokine-induced microglial responses for AD therapeutic development. However, the cytokine-induced microglial state transition is not comprehensively understood. Cytokines are assumed to induce microglial state transition from a resting state to an activated state. However, recent evidence indicate that this microglial state transition involves multiple sequential functional states. Moreover, the mechanisms by which different functional states within the cytokine-induced microglial state transition regulate AD pathology remain unclear. In this review, we summarize how different cytokine signaling pathways, including those of IL-33 (interleukin-33), NLRP3 inflammasome-IL-1β, IL-10, and IL-12/IL-23, regulate microglial functions in AD. Furthermore, we discuss how the modulation of these cytokine signaling pathways can result in beneficial outcomes in AD. Finally, we describe a stepwise functional state transition of microglia induced by cytokine signaling that can provide insights into the molecular basis of the beneficial effects of cytokine modulation in AD and potentially aid therapeutic development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8195901PMC
http://dx.doi.org/10.1007/s00018-021-03810-0DOI Listing

Publication Analysis

Top Keywords

state transition
20
cytokine signaling
16
microglial state
16
cytokine-induced microglial
12
microglial
9
alzheimer's disease
8
regulate microglial
8
microglial responses
8
therapeutic development
8
functional states
8

Similar Publications

The energy gaps, spin-orbit coupling (SOC), and admixture coefficients over a series of the configurations are evaluated by the SA-CASSCF/6-31G, SA-CASSCF/6-31G*, SA-CASSCF/ANO-RCC-VDZP, and MS-CASPT2/ANO-RCC-VDZP to reveal the extent of the inaccuracy of the SA-CASSCF. By comparing the mean absolute errors for the energy gaps and the admixture coefficient magnitudes (ACMs) measured between the SA-CASSCF/6-31G, SA-CASSCF/6-31G*, or SA-CASSCF/ANO-RCC-VDZP and the MS-CASPT2/ANO-RCC-VDZP, the SA-CASSCF/6-31G is selected as the electronic structure method in the nonadiabatic molecular dynamics simulation. The major components of the ACMs of the SA-CASSCF/6-31G and MS-CASPT2/ANO-RCC-VDZP are identified and compared; we find that the ACMs are underestimated by the SA-CASSCF/6-31G, which is verified by the reasonable triplet quantum yield simulated by the trajectory surface hopping and the calibrated SA-CASSCF/6-31G.

View Article and Find Full Text PDF

High-temperature structural disorders stabilize hydrous aluminosilicates in the mantle transition zone.

Nat Commun

January 2025

Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.

Hydrous aluminosilicates are important deep water-carriers in sediments subducting into the deep mantle. To date, it remains enigmatic how hydrous aluminosilicates withstand extremely high temperatures in the mantle transition zone. Here we systematically investigate the crystal structures and chemical compositions of typical hydrous aluminosilicates using single-crystal X-ray diffraction, electron probe microanalyzer, and nanoscale secondary ion mass spectrometry.

View Article and Find Full Text PDF

Developing efficient strategies for the deoxygenative functionalization of carbonyl compounds is crucial for enhancing the effective utilization of biomass and the upgrading of chemical feedstocks. In this study, we present an elegant cathodic reduction strategy that enables a tandem alkylation/dearomatization reaction between quinoline derivatives and aryl aldehydes/ketones in a one-pot process. Our approach can be executed via two distinct paths: the aluminum (Al)-facilitated spin-center shift (SCS) path and the Al-facilitated direct deoxygenation path.

View Article and Find Full Text PDF

Singular topological edge states in locally resonant metamaterials.

Sci Bull (Beijing)

January 2025

Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea. Electronic address:

Band topology has emerged as a novel tool for material design across various domains, including photonic and phononic systems, and metamaterials. A prominent model for band topology is the Su-Schrieffer-Heeger (SSH) chain, which reveals topological in-gap states within Bragg-type gaps (BG) formed by periodic modification. Apart from classical BGs, another mechanism for bandgap formation in metamaterials involves strong coupling between local resonances and propagating waves, resulting in a local resonance-induced bandgap (LRG).

View Article and Find Full Text PDF

The importance of Ombudsman programs in supporting the transition from medicare-medicaid plans to dual special needs plans.

Disabil Health J

January 2025

Disability Policy Consortium, 25 Kingston St, 4th Floor, Boston, MA, 02111, USA. Electronic address:

In this paper, we examine the critical role of Ombudsman programs in facilitating the transition from Medicare-Medicaid Plans (MMPs) to Dual Special Needs Plans (D-SNPS) for dual-eligible members. As states implement this federally mandated transition, Ombudsman programs serve as essential supports for the dual-eligible population who are navigating complex healthcare changes. Through analysis of Ombudsman programs in California, Massachusetts, Rhode Island, and Michigan, we highlight how these services address beneficiary concerns, resolve access issues, and provide valuable insights to policymakers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!