Isolation of a new phenazine antibiotic, DOB-41, from Pseudomonas species.

J Antibiot (Tokyo)

Shionogi Research Laboratories, Shionogi & Co., Ltd., Osaka, Japan.

Published: May 1988

A new phenazine antibiotic, DOB-41, was isolated from the culture broth of a Pseudomonas strain. The antibiotic obtained as yellow crystals showed UV maxima at 255 nm and 370 nm. A molecular formula, C19H18N2O6, was indicated by elemental analysis and mass spectrometry. The structure was elucidated by X-ray diffraction analysis. The antibiotic exhibited inhibitory activity against Gram-positive bacteria, and antitumor effect against leukemia P388 in mice.

Download full-text PDF

Source
http://dx.doi.org/10.7164/antibiotics.41.589DOI Listing

Publication Analysis

Top Keywords

phenazine antibiotic
8
antibiotic dob-41
8
isolation phenazine
4
antibiotic
4
dob-41 pseudomonas
4
pseudomonas species
4
species phenazine
4
dob-41 isolated
4
isolated culture
4
culture broth
4

Similar Publications

Bacterial biofilms are surface-attached communities consisting of non-replicating persister cells encased within an extracellular matrix of biomolecules. Unlike bacteria that have acquired resistance to antibiotics, persister cells enable biofilms to demonstrate innate tolerance toward all classes of conventional antibiotic therapies. It is estimated that 50-80% of bacterial infections are biofilm associated, which is considered the underlying cause of chronic and recurring infections.

View Article and Find Full Text PDF

Objective: To evaluate Chicago Sky Blue (CSB) stain, Calcofluor white (CW) stain, and Potassium Hydroxide (KOH) mount for rapid diagnosis of dermatomycosis, using fungal culture as the gold standard.

Study Design: Cross-sectional analytical study. Place and Duration of the Study: This study was conducted in the Department of Microbiology, Armed Forces Institute of Pathology / National University of Medical Sciences, Rawalpindi, Pakistan, from July 2023 to February 2024.

View Article and Find Full Text PDF

Exploring the antivirulence potential of phenolic compounds to inhibit quorum sensing in Pseudomonas aeruginosa.

World J Microbiol Biotechnol

January 2025

Food Research Center (FoRC), Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.

Bacteria coordinate gene expression in a cell density-dependent manner in a communication process called quorum sensing (QS). The expression of virulence factors, biofilm formation and enzyme production are QS-regulated phenotypes that can interfere in human health. Due to this importance, there is great interest in inhibiting QS, comprising an anti-virulence strategy.

View Article and Find Full Text PDF

Antibiotic resistance is a world wide problem mainly in developing countries. In this work, coelomic fluid (PCF) and paste (PBP) of Pheretima posthuma was assessed for its potential as antibiofilm and anti-quorum sensing (QS) agent against pathogenic bacterial biofilms. PCF and PBP were extracted and biofilm formation time kinetics was examined using crystal violet staining method by utilizing four bacterial isolates in bispecies biofilm (06 combinations; MH5-MH10) and multi species biofilms (05 combinations; MH11-MH15).

View Article and Find Full Text PDF

Heterologous Production of Phenazines in the Biocontrol Agent C3.

J Agric Food Chem

January 2025

Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States.

, an environmental bacterium, holds promise as a biocontrol agent due to its ability to produce bioactive compounds effective against plant pathogens, such as fungi, oomycetes, and Gram-positive bacteria. However, it lacks activity against Gram-negative bacteria. To address this, we applied new genetic tools to manipulate the phenazine biosynthetic gene cluster () from , converting to a robust producer of phenazine antibiotics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!