Present study is specially designed for the recent advances in biosensors to detect and quantify urea concentration. Urea (carbamide) is an organic compound made up of the carbonyl (C=O) functional group with two -NH groups having chemical formula CO (NH ) . In nature, urea is found everywhere as the result of various processes, and in the human body, urea is an end product of nitrogen metabolism. An excessive concentration of urea in the human body is responsible for different critical diseases such as indigestion, acidity, ulcers, cancer, malfunctioning of kidneys, renal failure, urinary tract obstruction, dehydration, shock, burns, gastrointestinal bleeding, and so on. Moreover, below the normal level may cause hepatic failure, nephritic syndrome, cachexia, and so on. As well as in various fields such as fishery, dairy, food preservation, agriculture, and so on, urea is normally found and its detection is necessary. In urea biosensors, enzyme urease (Urs) is used as a bioreceptor element and retains its long last activity is the critical issue in front of the researcher. During recent decades, different nanoparticles (zinc oxide, nickel oxide, iron oxide, titanium dioxide, tin(IV) oxide, etc.), conducting polymer (polyaniline, polypyrrole, etc.), conducting polymer-nanoparticles composites, carbon materials (carbon nanotubes, graphene oxide, reduced graphene oxide graphene), and so on are used in urea biosensors. The main emphasis of the present study is to provide cumulative and comprehensive information about the sensing parameters of urea biosensors based on the materials used for enzyme immobilization. Besides this special task, this review provides a fruitful discussion on the basics of biosensors briefly for new and upcoming researchers. Thus, the present study may act as a gift for a large audience that come from different fields and are working in biosensors research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bab.2168 | DOI Listing |
Biosensors (Basel)
January 2025
CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
Chronic Kidney Disease (CKD) is a disorder that affects over 10% of the global population, and that would benefit from innovative methodologies that would provide early detection. Since it has been reported that there are high levels of urease in CKD patients' saliva, this sample is a promising non-invasive alternative to blood for CKD detection and monitoring. This work introduces a novel 3D µPAD for quantifying urease activity in saliva in a range of 0.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China. Electronic address:
Background: High-precision and broad-range pH detection is critical for health status assessment, such as signal transduction, enzyme activity, endocytosis, and cell proliferation and apoptosis. Although pH-responsive ratiometric fluorescent probes offer an effective pH monitoring strategy, their preparation often requires multi-step modification and decreases fluorescence efficiency and stability. Herein, we developed a simple method to prepare fluorescent Si dots with dual emission centers for high-precision and broad-range pH monitoring, and the detection of urease based on pH-responsive Si dots and pH monitoring in living cell was further explored.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China; Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, China.
A novel dual-parameter optical fiber biosensor based on surface plasmon resonance (SPR) for simultaneous measurement of urea and uric acid concentrations is proposed in this paper. Based on the principle of positive and negative electric combination, ZnO nanoparticles is selected as the matrix for immobilizing urease and uricase with selective recognition ability, which can also be used as a sensitizing material to increase the refractive index detection sensitivity of SPR by 22%. Then, Nafion ion exchange membrane was introduced to wrap the urea sensing area to avoid crosstalk caused by the overlap of adjacent sensing areas.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, PR China.
Psychological stress is a major contributor to individual health disparities. Accurate and quantitative detection of stress markers is crucial preventing mental health related problems. Supramolecular chemistry is widely used in drug delivery, catalysis, sensors and other applications.
View Article and Find Full Text PDFTalanta
April 2025
School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, 3125, Australia.
Plasma viscosity measurement is crucial in clinical diagnostics, providing insights into blood rheology and health status. Traditional methods, such as capillary and rotational viscometers, require large sample volumes and complex calibration. This study presents a novel disposable electrochemical sensor with co-facing electrodes for viscosity monitoring of plasma samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!