Room-Temperature Magnetoelectric Coupling in Electronic Ferroelectric Film based on [(-CH)N][FeFe(dto)] (dto = COS).

J Am Chem Soc

Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China.

Published: April 2021

Great importance has been attached to magnetoelectric coupling in multiferroic thin films owing to their extremely practical use in a new generation of devices. Here, a film of [(-CH)N][FeFe(dto)] (; dto = COS) was fabricated using a simple stamping process. As was revealed by our experimental results, in-plane ferroelectricity over a wide temperature range from 50 to 300 K was induced by electron hopping between Fe and Fe sites. This mechanism was further confirmed by the ferroelectric observation of the compound [(-CH)N][FeZn(dto)] (; dto = COS), in which Fe ions were replaced by nonmagnetic metal Zn ions, resulting in no obvious ferroelectric polarization. However, both ferroelectricity and magnetism are related to the magnetic Fe ions, implying a strong magnetoelectric coupling in . Through piezoresponse force microscopy (PFM), the observation of magnetoelectric coupling was achieved by manipulating ferroelectric domains under an in-plane magnetic field. The present work not only provides new insight into the design of molecular-based electronic ferroelectric/magnetoelectric materials but also paves the way for practical applications in a new generation of electronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.1c00601DOI Listing

Publication Analysis

Top Keywords

magnetoelectric coupling
16
dto cos
12
[-chn][fefedto] dto
8
room-temperature magnetoelectric
4
coupling
4
coupling electronic
4
ferroelectric
4
electronic ferroelectric
4
ferroelectric film
4
film based
4

Similar Publications

Nonvolatile Magnonics in Bilayer Magnetic Insulators.

Nano Lett

January 2025

Smart Ferroic Materials Center, Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States.

Nonvolatile control of spin order or spin excitations offers a promising avenue for advancing spintronics; however, practical implementation remains challenging. In this Letter, we propose a general framework to realize electrical control of magnons in 2D magnetic insulators. We demonstrate that in bilayer ferromagnetic insulators with strong spin-layer coupling, the electric field can effectively manipulate the spin exchange interactions between the layers, enabling nonvolatile control of the corresponding magnons.

View Article and Find Full Text PDF

Recent studies have demonstrated the ability to switch weakly coupled interlayer magnetic orders by using electric polarization in insulating van der Waals heterostructures. However, controlling strongly coupled intralayer magnetic orders remains a significant challenge. In this work, we propose that frustrated multiferroic heterostructures can exhibit enhanced intralayer magnetoelectric coupling.

View Article and Find Full Text PDF

Magnetoelectric properties and Morin type spin transitions of Na-doped GaFeO.

J Phys Condens Matter

January 2025

Department of Physics, University of Kerala, Karyavattom 695581, Thiruvananthapuram, Kerala, India.

The effects of Na doping on the structure magnetic, electric, and magnetoelectric properties of GaFeOwere studied. Rietveld refinement of the XRD data reveals the formation of a single-phase trigonal structure with no impurity on Na doping up to 50% and a significant increase in lattice strain with doping. FTIR and Raman analysis further supported the phase purity of the samples.

View Article and Find Full Text PDF

A D-Band Dual-Polarized High-Gain LTCC-Based Reflectarray Antenna Using SIW Magnetoelectric-Dipole Elements.

Micromachines (Basel)

December 2024

State Key Laboratory of Millimeter-Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China.

This paper presents a D-band dual linear-polarized wideband high-gain reflectarray (RA) antenna using low-temperature co-fired-ceramic (LTCC) technology. The proposed element comprises a dual-polarized magnetoelectric (ME) dipole and a multilayer slot-coupling substrate-integrated waveguide (SIW) phase-delay structure, which are organized in accordance with the receiving/reradiating (R/R) principle. The coverage of phase shifts for both orthogonal polarizations is set to be greater than 360 degrees by varying the length of the phase-delay structure.

View Article and Find Full Text PDF

Two-dimensional (2D) ferromagnetic materials are subjects of intense research owing to their intriguing physicochemical properties, which hold great potential for fundamental research and spintronic applications. Specifically, 2D van der Waals (vdW) ferromagnetic materials retain both structural integrity and chemical stability even at the monolayer level. Moreover, due to their atomic thickness, these materials can be easily manipulated by stacking them with other 2D vdW ferroic and nonferroic materials, enabling precise control over their physical properties and expanding their functional applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!