AI Article Synopsis

Article Abstract

Early screening and diagnosis of autism spectrum disorder (ASD) primarily rely on behavioral observations by qualified clinicians whose decision process can benefit from the combination of machine learning algorithms and sensor data. We designed a computerized visual-orienting task with gaze-related or non-gaze-related directional cues, which triggered participants' gaze-following behavior. Based on their eye-movement data registered by an eye tracker, we applied the machine learning algorithms to classify high-functioning children with ASD (HFA), low-functioning children with ASD (LFA), and typically developing children (TD). We found that TD children had higher success rates in obtaining rewards than HFA children, and HFA children had higher rates than LFA children. Based on raw eye-tracking data, our machine learning algorithm could classify the three groups with an accuracy of 81.1% and relatively high sensitivity and specificity. Classification became worse if only data from the gaze or nongaze conditions were used, suggesting that "less-social" directional cues also carry useful information for distinguishing these groups. Our findings not only provide insights about visual-orienting deficits among children with ASD but also demonstrate the promise of combining classical behavioral paradigms with machine learning algorithms for aiding the screening for individuals with ASD.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pchj.447DOI Listing

Publication Analysis

Top Keywords

machine learning
16
learning algorithms
12
children asd
12
children
9
autism spectrum
8
spectrum disorder
8
computerized visual-orienting
8
visual-orienting task
8
directional cues
8
children higher
8

Similar Publications

Identification of circadian rhythm-related biomarkers and development of diagnostic models for Crohn's disease using machine learning algorithms.

Comput Methods Biomech Biomed Engin

January 2025

Department of Gastroenterolgy, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China.

The global rise in Crohn's Disease (CD) incidence has intensified diagnostic challenges. This study identified circadian rhythm-related biomarkers for CD using datasets from the GEO database. Differentially expressed genes underwent Weighted Gene Co-Expression Network Analysis, with 49 hub genes intersected from GeneCards data.

View Article and Find Full Text PDF

Context.—: Generative artificial intelligence (AI) has emerged as a transformative force in various fields, including anatomic pathology, where it offers the potential to significantly enhance diagnostic accuracy, workflow efficiency, and research capabilities.

Objective.

View Article and Find Full Text PDF

In this research, a green approach utilizing deep eutectic solvent liquid-liquid microextraction is combined with smartphone digital image colorimetry for the determination of boron in nut samples. A smartphone camera was used to capture the image of the analyte extract located in a custom-made colorimetric box. Using ImageJ software, the images were split into RGB channels, with the green channel identified as the optimum.

View Article and Find Full Text PDF

Assessing water quality restoration measures in Lake Pampulha (Brazil) through remote sensing imagery.

Environ Sci Pollut Res Int

January 2025

LEESU, Ecole des Ponts Paris Tech, UPEC, AgroParisTech, F-77455 Marne-la-Vallée, Paris, France.

Urban reservoirs are frequently exposed to impacts from high population density, polluting activities, and the absence of environmental control measures and monitoring. In this study, we investigated the use of satellite imagery to assess restoration measures and support decision-making in a hypereutrophic urban reservoir. Since 2016, Lake Pampulha (Brazil) has undergone restoration measures, including the application of Phoslock®, to mitigate its poor water quality conditions.

View Article and Find Full Text PDF

Objective: Despite the identification of various prognostic factors for anaplastic thyroid carcinoma (ATC) patients over the years, a precise prognostic tool for these patients is still lacking. This study aimed to develop and validate a prognostic model for predicting survival outcomes for ATC patients using random survival forests (RSF), a machine learning algorithm.

Methods: A total of 1222 ATC patients were extracted from the Surveillance, Epidemiology, and End Results (SEER) database and randomly divided into a training set of 855 patients and a validation set of 367 patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!