Citicoline Modulates Glaucomatous Neurodegeneration Through Intraocular Pressure-Independent Control.

Neurotherapeutics

UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.

Published: April 2021

Glaucoma is a neurodegenerative disease that causes progressive, irreversible vision loss. Currently, intraocular pressure (IOP) is the only modifiable risk factor for glaucoma. However, glaucomatous degeneration may continue despite adequate IOP control. Therefore, there exists a need for treatment that protects the visual system, independent of IOP. This study sought, first, to longitudinally examine the neurobehavioral effects of different magnitudes and durations of IOP elevation using multi-parametric magnetic resonance imaging (MRI), optokinetics and histology; and, second, to evaluate the effects of oral citicoline treatment as a neurotherapeutic in experimental glaucoma. Eighty-two adult Long Evans rats were divided into six groups: acute (mild or severe) IOP elevation, chronic (citicoline-treated or untreated) IOP elevation, and sham (acute or chronic) controls. We found that increasing magnitudes and durations of IOP elevation differentially altered structural and functional brain connectivity and visuomotor behavior, as indicated by decreases in fractional anisotropy in diffusion tensor MRI, magnetization transfer ratios in magnetization transfer MRI, T1-weighted MRI enhancement of anterograde manganese transport, resting-state functional connectivity, visual acuity, and neurofilament and myelin staining along the visual pathway. Furthermore, 3 weeks of oral citicoline treatment in the setting of chronic IOP elevation significantly reduced visual brain integrity loss and visual acuity decline without altering IOP. Such effects sustained after treatment was discontinued for another 3 weeks. These results not only illuminate the close interplay between eye, brain, and behavior in glaucomatous neurodegeneration, but also support a role for citicoline in protecting neural tissues and visual function in glaucoma beyond IOP control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8423893PMC
http://dx.doi.org/10.1007/s13311-021-01033-6DOI Listing

Publication Analysis

Top Keywords

iop elevation
20
iop
10
glaucomatous neurodegeneration
8
iop control
8
magnitudes durations
8
durations iop
8
oral citicoline
8
citicoline treatment
8
magnetization transfer
8
visual acuity
8

Similar Publications

This study characterizes a fluorescent -tdTomato neuronal reporter mouse line with strong labeling of axons throughout the optic nerve, of retinal ganglion cell (RGC) soma in the ganglion cell layer (GCL), and of RGC dendrites in the inner plexiform layer (IPL). The model facilitated assessment of RGC loss in models of degeneration and of RGC detection in mixed neural/glial cultures. The tdTomato signal showed strong overlap with >98% cells immunolabeled with RGC markers RBPMS or BRN3A, consistent with the ubiquitous presence of the vesicular glutamate transporter 2 (VGUT2, SLC17A6) in all RGC subtypes.

View Article and Find Full Text PDF

Background: To evaluate the biosafety, reduction in anterior capsule opacification, and fluctuation in intraocular pressure (IOP) of a new phakic refractive lens (PRL) with a sinusoidal drainage groove design.

Methods: This self-controlled experiment was performed on eight eyes of four rabbits. Each rabbit was implanted with a sinusoidal PRL (PRL-S5) in the right eye and a conventional posterior chamber PRL (PC-PRL) in the left eye.

View Article and Find Full Text PDF

Primary open-angle glaucoma (POAG), if caused by elevated intraocular pressure (IOP), may require a trabeculotomy (LOT), in which the trabecular meshwork (TM) and Schlemm's canal (ISC) are incised. However, the association between the incision angle and outcomes remains unclear. Therefore, in this study, we investigated the surgical outcomes of a trabeculotomy combined with cataract surgery in patients with POAG over a 12-month follow-up period.

View Article and Find Full Text PDF

Bilateral Fuchs' Superficial Marginal Keratitis Diagnosis and Treatment.

Life (Basel)

December 2024

Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan.

In this study, we reported two patients with clinical pictures compatible with the diagnosis of bilateral Fuchs' superficial marginal keratitis (FSMK) treated with surgical treatment and anti-inflammatory drugs. The cases suffered from bilateral photophopia, blurred vision, and pseudopterygium with normal intraocular pressure (IOP). Pseudopterygia extended from temporal and nasal sides and had a gray line between the corneal normal epithelium with no lipid deposits.

View Article and Find Full Text PDF

Glaucoma is a leading cause of irreversible blindness, often associated with elevated intraocular pressure (IOP) due to trabecular meshwork (TM) dysfunction. Diabetes mellitus (DM) is recognized as a significant risk factor for glaucoma; however, the molecular mechanisms through which hyperglycemia affects TM function remain unclear. This study investigated the impact of high glucose on gene expression in human TM (HTM) cells to uncover pathways that contribute to TM dysfunction and glaucoma pathogenesis under diabetic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!