This experiment evaluated the influence of protein supplementation frequency (SF) and amount offered on intake, nutrient digestibility, and ruminal fermentation by rumen-fistulated beef steers consuming low-quality [2.9% crude protein (CP); dry matter (DM) basis], cool-season forage. Seven Angus × Hereford steers (300 ± 27 kg) fitted with ruminal cannulas were randomly assigned to 1 of 7 treatments in an incomplete 7 × 4 Latin square. Treatments, in a 2 × 3 factorial design plus a non-supplemented control (CON), consisted of 2 levels of supplemental soybean meal, 100% (F) or 50% (H) of the estimated rumen-degradable protein requirement, provided daily (D), once every 5 d (5D), or once every 10 d (10D). Experimental periods were 30 d and dry matter intake (DMI) was measured from days 19 to 28. On days 21 (all supplements provided) and 30 (only daily supplements provided; day immediately prior to supplementation for 5D and 10D treatments) ruminal fluid was collected for ruminal pH, ammonia-N (NH3), volatile fatty acids (VFA), and determination of ruminal fermentation variables. Forage and total DM, organic matter (OM), and nitrogen (N) intake increased with supplementation (P ≤ 0.04). However, a linear effect of SF × amount of supplement interaction was observed for forage and total DM, OM, and N intake (P ≤ 0.04), with each variable decreasing as SF decreased, but the decrease being greater with F vs. H. Apparent total tract DM, OM, and neutral detergent fiber digestibility was not affected by supplementation or amount of supplement provided (P ≥ 0.10). In contrast, N digestibility increased with supplementation and for F vs. H (P < 0.01). Digestibility of DM, OM, and N increased linearly as SF decreased (P ≤ 0.03). When all supplements were provided, ruminal NH3, total VFA, and molar proportions of all individual VFA increased with supplementation (P ≤ 0.04), whereas acetate:propionate ratio decreased (P < 0.01). When only daily supplements were provided, none of the aforementioned fermentation parameters were affected (P ≥ 0.09). In summary, reducing the amount of supplemental CP provided to ruminants consuming low-quality forages, when supplementation intervals are >5 d, can be a management tool to maintain acceptable levels of DMI, nutrient digestibility, and ruminal fermentation while reducing supplementation cost.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8188819 | PMC |
http://dx.doi.org/10.1093/jas/skab112 | DOI Listing |
Sci Rep
January 2025
Animal Production Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
Cassava (Manihot esculenta Crantz) is a crucial crop in tropics and subtropics, primarily cultivated for its tuber. However, its foliage is rich in protein and can supply essential elements for ruminants. The objective of this study was to evaluate the phytochemical compounds by Gas chromatography-MS (GC-MS) and the main phenolic by High Pressure Liquid Chromatography (HPLC) present in cassava foliage, along with the fermentation pattern using a semi-automated gas production (GP) system.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile.
D-lactic acidosis is associated with fermentative disturbances and is often marked by elevated levels of D-lactic acid in the blood, ruminal fluid, and synovial fluid in cattle. D-lactic acidosis is linked to various inflammatory manifestations, and although the causative factors have been extensively explored, the exact pathogenesis of the associated inflammation remains elusive. Notably, less attention has been given to D-lactate, a stereoisomer found in the plasma of affected animals, which may lead to D-lactic acidosis.
View Article and Find Full Text PDFFront Vet Sci
December 2024
College of Animal Science and Technology, Ningxia University, Yinchuan, China.
Introduction: Postpartum dairy cows are susceptible to negative energy balance caused by decreased feed intake and the initiation of lactation. Sijunzi San, a famous Chinese traditional herbal formulation, can promote gastrointestinal digestion and absorption and improve disorders of intestinal microbiota. Therefore, we hypothesized that Sijunzi San might alleviate negative energy balance in postpartum dairy cows by modulating the structure of the rumen microbiota and enhancing its fermentation capacity.
View Article and Find Full Text PDFTransl Anim Sci
December 2024
Department of International Development, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK.
The objective of this study was to determine the effects of dietary agro-industrial by-products (AIBP) with different amounts of metabolizable energy (ME) and crude protein (CP) on fermentation (96 h) and gas production (GP) kinetics in vitro, as well as acceptability, animal performance, digestibility, and blood parameters in lambs. The gas production technique (GPT) and fermentation characteristics were used in an in vitro trial. This experiment used diets with ME contents of 6.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
The objective of this research was to examine the impact of feeding biologically treated rumen digesta (BTRD) to Holstein steer calves at levels of 0, 10, 20, and 30% (DM-based) on feed consumption, nutrient digestion, growth performance, rumen fermentation, and plasma metabolites. Sixteen Holstein steer calves with an initial BW of 113 ± 8 kg were randomly allocated in a randomized complete design. Dietary inclusion of BTRD in calves diet did not altered (P < 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!