Facile preparation and performance study of antibacterial regenerated cellulose carbamate fiber based on N-halamine.

Cellulose (Lond)

College of Textile and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biomass Fibers Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071 China.

Published: April 2021

With the outbreak of coronavirus disease (COVID-19) which has incalculable disasters and economic losses, people have given increasing attention to the health and safety of textile and fiber materials. In this study, an eco-friendly, facile, and cost-effective wet-spinning cellulose carbamate fiber technology was developed, and N-halamine regenerated cellulose fiber (RCC-Cl) with rechargeable and rapid bactericidal properties were prepared by the Lewis acid-assisted chlorination method. The chemical properties of the fibers were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis, and energy-dispersive X-ray spectroscopy. The mechanical and surface topography of the treated fiber was investigated by tensile testing and scanning electron microscopy. The results showed that the mechanical properties of RCC-Cl fibers can reach a breaking strength of 12.1 cN/tex and a breaking elongation of 41.4% with the optimized spinning process. Furthermore, RCC-Cl showed excellent antimicrobial activities, which can inactivate and at a concentration of 10 CFU/mL within 1 min. This work provided a novel approach to produce regenerated cellulose fibers with antibacterial properties, showing great potential in the field of functional textiles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8028583PMC
http://dx.doi.org/10.1007/s10570-021-03836-4DOI Listing

Publication Analysis

Top Keywords

regenerated cellulose
12
cellulose carbamate
8
carbamate fiber
8
fiber
5
facile preparation
4
preparation performance
4
performance study
4
study antibacterial
4
antibacterial regenerated
4
cellulose
4

Similar Publications

Investigating the Degradation of Historical Man-Made Cellulose-Derived Textiles via Accelerated Ageing.

Chempluschem

March 2025

University College London, The Bartlett School of Environment Energy and Resources, University College London, 14 Upper Woburn Place, WC1H 0NN, London, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Cellulose-derived materials, like paper and cellulose acetate, are known to be vulnerable to degradation within museum collections. Studies have been conducted and degradation markers have been identified on these materials. However, the degradation of man-made cellulose-derived fibres in collections is not well understood.

View Article and Find Full Text PDF

This study aims to develop and characterize electroactive hydrogels based on reduced bacterial cellulose (BC) and TiCT -MXene for their potential application in wound healing and real-time monitoring. The integration of TiCT -MXene into BC matrices represents a novel approach to creating multifunctional hydrogels that combine biocompatibility, electrical conductivity, and mechanical durability. These properties make the hydrogels promising candidates for advanced wound care and real-time monitoring applications.

View Article and Find Full Text PDF

Nickel-supported cellulose-based porous composite for catalytic hydrogenation of oleic acid.

Int J Biol Macromol

March 2025

Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Based on the amino-functionalized corn straw cellulose-based porous material, a structurally stable and high-performance straw-based metal catalyst (PPCS@Ni) was prepared by depositing metal particles on the surface of porous straw (PCS) using an economical and environmentally friendly polymer-assisted metal deposition (PAMD) method. Due to the excellent structural stability of the metal material and the catalytic performance of nickel, PPCS@Ni exhibited outstanding catalytic efficiency, cyclic regeneration ability, and stability in the catalytic hydrogenation of oleic acid. Furthermore, after experimental screening and optimization (8 g oleic acid, 34.

View Article and Find Full Text PDF

Aim Achieving adequate hemostasis is a critical aspect of surgical practice, especially in orthopedics, where bleeding can impact visibility and patient outcomes. Surgi-ORC® (Aegis Lifesciences Pvt. Ltd.

View Article and Find Full Text PDF

Sulfonated Cellulose: A Strategy for Effective Methylene Blue Sequestration.

ACS Omega

March 2025

Department of Chemistry, Faculty of Science, Ege University, Bornova, Izmir 35040, Türkiye.

This study investigates the sulfonation modification of cellulose for the removal of methylene blue (MB) from aqueous solutions. The prepared biosorbent was characterized, and its sorption capacity, kinetics, and thermodynamics were systematically evaluated. Fourier-transform infrared (FTIR) spectroscopy analyzed structural modifications, while scanning electron microscopy (SEM) examined the surface properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!