The quality of cephalometric analysis depends on the accuracy of the delineating landmarks in orthodontic and maxillofacial surgery. Due to the extensive number of landmarks, each analysis costs orthodontists considerable time per patient, leading to fatigue and inter- and intra-observer variabilities. Therefore, we proposed a fully automated cephalometry analysis with a cascade convolutional neural net (CNN). One thousand cephalometric x-ray images (2 k × 3 k) pixel were used. The dataset was split into training, validation, and test sets as 8:1:1. The 43 landmarks from each image were identified by an expert orthodontist. To evaluate intra-observer variabilities, 28 images from the dataset were randomly selected and measured again by the same orthodontist. To improve accuracy, a cascade CNN consisting of two steps was used for transfer learning. In the first step, the regions of interest (ROIs) were predicted by RetinaNet. In the second step, U-Net detected the precise landmarks in the ROIs. The average error of ROI detection alone was 1.55 ± 2.17 mm. The model with the cascade CNN showed an average error of 0.79 ± 0.91 mm (paired t-test, p = 0.0015). The orthodontist's average error of reproducibility was 0.80 ± 0.79 mm. An accurate and fully automated cephalometric analysis was successfully developed and evaluated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8041841 | PMC |
http://dx.doi.org/10.1038/s41598-021-87261-4 | DOI Listing |
BMC Cancer
January 2025
Department of Urology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
Background: To develop and test the performance of a fully automated system for classifying renal tumor subtypes via deep machine learning for automated segmentation and classification.
Materials And Methods: The model was developed using computed tomography (CT) images of pathologically proven renal tumors collected from a prospective cohort at a medical center between March 2016 and December 2020. A total of 561 renal tumors were included: 233 clear cell renal cell carcinomas (RCCs), 82 papillary RCCs, 74 chromophobe RCCs, and 172 angiomyolipomas.
Anal Chim Acta
March 2025
Holosensor Medical Technology Ltd, Room 12, No. 1798, Zhonghuayuan West Road, Yushan Town, Suzhou, 215000, China; Department of Veterinary Medicine, University of Cambridge, Cambridge, UK. Electronic address:
Rapid and sensitive protein detection methods are of benefit to clinical diagnosis, pathological mechanism research, and infection prevention. However, routine protein detection technologies, such as enzyme-linked immunosorbent assay and Western blot, suffer from low sensitivity, poor quantification and labourious operation. Herein, we developed a fully automated protein analysis system to conduct fast protein quantification at the single molecular level.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.
Objectives: To evaluate recent advances in the automatic multimodal registration of cone-beam computed tomography (CBCT) and intraoral scans (IOS) and their clinical significance in dentistry.
Methods: A comprehensive literature search was conducted in October 2024 across the PubMed, Web of Science, and IEEE Xplore databases, including studies that were published in the past decade. The inclusion criteria were as follows: English-language studies, randomized and nonrandomized controlled trials, cohort studies, case-control studies, cross-sectional studies, and retrospective studies.
Int J Surg
January 2025
School of Medicine, South China University of Technology, Guangzhou, China.
Background: The asymptomatic onset and extremely high mortality rate of aortic aneurysm (AA) highlight the urgency of early detection and timely intervention. The alteration of retinal vascular features (RVFs) can reflect the systemic vascular properties, and be widely used as the biomarker for cardiovascular disease risk prediction. Therefore, we aimed to investigate associations of RVFs with AA and its progression.
View Article and Find Full Text PDFCureus
December 2024
Department of Orthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, IRN.
Background Orthodontic diagnostic workflows often rely on manual classification and archiving of large volumes of patient images, a process that is both time-consuming and prone to errors such as mislabeling and incomplete documentation. These challenges can compromise treatment accuracy and overall patient care. To address these issues, we propose an artificial intelligence (AI)-driven deep learning framework based on convolutional neural networks (CNNs) to automate the classification and archiving of orthodontic diagnostic images.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!