Diguanylate cyclases synthesising the bacterial second messenger c-di-GMP are found to be regulated by a variety of sensory input domains that control the activity of their catalytical GGDEF domain, but how activation proceeds mechanistically is, apart from a few examples, still largely unknown. As part of two-component systems, they are activated by cognate histidine kinases that phosphorylate their Rec input domains. DgcR from Leptospira biflexa is a constitutively dimeric prototype of this class of diguanylate cyclases. Full-length crystal structures reveal that BeF pseudo-phosphorylation induces a relative rotation of two rigid halves in the Rec domain. This is coupled to a reorganisation of the dimeric structure with concomitant switching of the coiled-coil linker to an alternative heptad register. Finally, the activated register allows the two substrate-loaded GGDEF domains, which are linked to the end of the coiled-coil via a localised hinge, to move into a catalytically competent dimeric arrangement. Bioinformatic analyses suggest that the binary register switch mechanism is utilised by many diguanylate cyclases with N-terminal coiled-coil linkers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8041772 | PMC |
http://dx.doi.org/10.1038/s41467-021-22492-7 | DOI Listing |
Biofilm
June 2025
State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China.
is a prevalent pathogen in both humans and marine species, exhibiting high adaptability to various adverse environmental conditions. Our previous studies have shown that Δ formed three enhanced biofilm types, including spectacular surface-attached biofilm (SB), scattered pellicle biofilm (PB), and colony rugosity. However, the precise mechanism through which regulates biofilm formation has remained unclear.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China.
Commun Biol
December 2024
Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.
Flagella are essential for biofilm formation, adhesion, virulence, and motility. In this study, the deletion of argR resulted in defects in flagellar synthesis and reduced motility, nevertheless, the underlying mechanism by which ArgR regulated bacterial motility remained unclear. ChIP-Seq and RNA-Seq analysis revealed that ArgR regulated the expression of flagellar genes, concluding two-component system flrBC and multitudinous flagellar structure genes.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.
Surface sensing is a key aspect of the early stage of biofilm formation. For , the type IV pili (TFP), the TFP alignment complex and PilY1 were shown to play a key role in c-di-GMP signaling upon surface contact. The role of the flagellar machinery in surface sensing is less well understood in .
View Article and Find Full Text PDFProc Biol Sci
December 2024
Department of Molecular Biology, Umeå University, Umeå, Sweden.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!