Background: Poor mental health status and associated risk factors of public health workers have been overlooked during the COVID-19 pandemic. This study used the effort-reward imbalance model to investigate the association between work-stress characteristics (effort, over-commitment, reward) and mental health problems (anxiety and depression) among front-line public health workers during the COVID-19 pandemic in China.

Methods: A total of 4850 valid online questionnaires were collected through a self- constructed sociodemographic questionnaire, the adapted ERI questionnaire, the 9-item Patient Health Questionnaire (PHQ-9) and the 7-item General Anxiety Disorder Scale (GAD-7). Hierarchical logistic regression analysis was conducted to investigate the association between ERI factors and mental health problems (i.e., depression and anxiety), with reward treated as a potential moderator in such associations.

Results: The data showed that effort and over-commitment were positively associated with depression and anxiety, while reward was negatively associated with depression and anxiety. Development and job acceptance were the two dimensions of reward buffered the harmful effect of effort/over-commitment on depression and anxiety, whereas esteem was non-significant.

Conclusions: This study confirmed the harmful effects of effort and over-commitment on mental health among public health workers during the COVID-19 pandemic in China. Such effects could be alleviated through an appropriate reward system, especially the development and job acceptance dimensions of such a system. These findings highlight the importance of establishing an emergency reward system, comprising reasonable work-allocation mechanism, bonuses and honorary titles, a continuous education system and better career-development opportunities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8040352PMC
http://dx.doi.org/10.1186/s40359-021-00563-0DOI Listing

Publication Analysis

Top Keywords

mental health
20
public health
16
health workers
16
covid-19 pandemic
16
depression anxiety
16
health problems
12
workers covid-19
12
effort over-commitment
12
health
10
front-line public
8

Similar Publications

The current study aims to determine how the interactions between practice (distributed/focused) and mental capacity (high/low) in the cloud-computing environment (CCE) affect the development of reproductive health skills and cognitive absorption. The study employed an experimental design, and it included a categorical variable for mental capacity (low/high) and an independent variable with two types of activities (distributed/focused). The research sample consisted of 240 students from the College of Science and College of Applied Medical Sciences at the University of Hail's.

View Article and Find Full Text PDF

The COVID-19 outbreak, caused by the SARS-CoV-2 virus, was linked to significant neurological and psychiatric manifestations. This review examines the physiopathological mechanisms underlying these neuropsychiatric outcomes and discusses current management strategies. Primarily a respiratory disease, COVID-19 frequently leads to neurological issues, including cephalalgia and migraines, loss of sensory perception, cerebrovascular accidents, and neurological impairment such as encephalopathy.

View Article and Find Full Text PDF

The field of emotion recognition from physiological signals is a growing area of research with significant implications for both mental health monitoring and human-computer interaction. This study introduces a novel approach to detecting emotional states based on fractal analysis of electrodermal activity (EDA) signals. We employed detrended fluctuation analysis (DFA), Hurst exponent estimation, and wavelet entropy calculation to extract fractal features from EDA signals obtained from the CASE dataset, which contains physiological recordings and continuous emotion annotations from 30 participants.

View Article and Find Full Text PDF

Personalized Clustering for Emotion Recognition Improvement.

Sensors (Basel)

December 2024

Instituto de Estudios de Género, Universidad Carlos III de Madrid, Calle Madrid, 126, 28903 Getafe, Spain.

Emotion recognition through artificial intelligence and smart sensing of physical and physiological signals (affective computing) is achieving very interesting results in terms of accuracy, inference times, and user-independent models. In this sense, there are applications related to the safety and well-being of people (sexual assaults, gender-based violence, children and elderly abuse, mental health, etc.) that require even more improvements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!