A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning. | LitMetric

Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning.

Comput Biol Med

Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany. Electronic address:

Published: June 2021

Coronavirus disease 2019 (COVID-19) is a major threat worldwide due to its fast spreading. As yet, there are no established drugs available. Speeding up drug discovery is urgently required. We applied a workflow of combined in silico methods (virtual drug screening, molecular docking and supervised machine learning algorithms) to identify novel drug candidates against COVID-19. We constructed chemical libraries consisting of FDA-approved drugs for drug repositioning and of natural compound datasets from literature mining and the ZINC database to select compounds interacting with SARS-CoV-2 target proteins (spike protein, nucleocapsid protein, and 2'-o-ribose methyltransferase). Supported by the supercomputer MOGON, candidate compounds were predicted as presumable SARS-CoV-2 inhibitors. Interestingly, several approved drugs against hepatitis C virus (HCV), another enveloped (-) ssRNA virus (paritaprevir, simeprevir and velpatasvir) as well as drugs against transmissible diseases, against cancer, or other diseases were identified as candidates against SARS-CoV-2. This result is supported by reports that anti-HCV compounds are also active against Middle East Respiratory Virus Syndrome (MERS) coronavirus. The candidate compounds identified by us may help to speed up the drug development against SARS-CoV-2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8008812PMC
http://dx.doi.org/10.1016/j.compbiomed.2021.104359DOI Listing

Publication Analysis

Top Keywords

supervised machine
8
machine learning
8
candidate compounds
8
compounds
5
drug
5
identification novel
4
novel compounds
4
compounds three
4
three targets
4
targets sars
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!