Fine-scale responses of mobile invertebrates and mesopredatory fish to habitat configuration.

Mar Environ Res

Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, NSW, Australia; Sydney Institute of Marine Science, 19 Chowder Bay Road, Mosman, NSW, 2088, Australia.

Published: June 2021

As habitat-forming species continue to decline globally, it is important to understand how associated communities respond to habitat loss and fragmentation. Changes in the density and spatial configuration of habitat have important consequences for associated communities. However, tests of these factors are often confounded by morphological variation of habitat-formers, which can be resolved by using standardised habitat-mimics. Furthermore, few studies have incorporated the role of predators in mediating the observed effects. To test whether predators mediate the abundance of invertebrates among algal habitats of varying configuration (isolated vs patches, and positions within patches), we placed macroalgal mimics into subtidal estuarine habitats for one month to sample epifaunal communities. At the same time, we conducted underwater video surveys of fish communities to quantify fish communities and their feeding behaviour among the artificial habitats. Isolated habitats did not differ from patch habitats, however, patch edges had the highest epifaunal abundance, where fish were least commonly observed. Observed fish feeding was highest in the middle of patches and increased fish observations and feeding in habitats with reduced epifaunal communities suggest that mesopredatory fish are mediating epifauna in patches, with predation pressure altered by the spatial configuration of the habitat. This contrasts to previous studies that focus on predators that congregate outside patches and suggest that fragmentation leads to reduced invertebrate abundance at habitat edges in contrast to centres. However, this study highlights that in habitat patches housing small mesopredators that also benefit from the increased structure, the centre of the patch experiences higher predation and therefore fewer epifauna in contrast to patch edges and individual algal mimics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2021.105319DOI Listing

Publication Analysis

Top Keywords

mesopredatory fish
8
associated communities
8
spatial configuration
8
configuration habitat
8
epifaunal communities
8
fish communities
8
patch edges
8
fish
7
habitat
6
communities
6

Similar Publications

Predators regulate communities through top-down control in many ecosystems. Because most studies of top-down control last less than a year and focus on only a subset of the community, they may miss predator effects that manifest at longer timescales or across whole food webs. In southeastern US salt marshes, short-term and small-scale experiments indicate that nektonic predators (e.

View Article and Find Full Text PDF
Article Synopsis
  • Unsustainable fishing practices have led to decreased global fish populations, prompting increased aquaculture, particularly involving Atlantic salmon, which has opened up new fisheries for mesopredatory species like the goldsinny wrasse.
  • The goldsinny wrasse plays a crucial ecological role in coastal ecosystems, but its survival is threatened by climate change impacts such as marine heatwaves, ocean freshening, and ocean acidification.
  • Experiments revealed high sensitivity of goldsinny wrasse to multiple stressors, resulting in significant mortality rates and metabolic changes, highlighting the need for conservation efforts to protect this species and its role in coastal habitats.
View Article and Find Full Text PDF

Marine predators are vital to the healthy functioning of coastal ecosystems, but to understand their roles, it is necessary to elucidate their movement ecology, particularly in relation to one another. A decade's worth of acoustic telemetry data (2011-2020) from Algoa Bay, South Africa, was investigated to determine how two mesopredatory species (teleosts: dusky kob Argyrosomus japonicus, n = 11, and leervis Lichia amia, n = 16) and two top predatory species (sharks: ragged-tooth sharks Carcharias taurus, n = 45, and white sharks Carcharodon carcharias, n = 31) used and shared this bay ecosystem. Multi-annual seasonal fidelity to the bay was exhibited by all species, but differences in residency were observed among species.

View Article and Find Full Text PDF

Both sharks and humans present a potentially lethal threat to mesopredatory fishes in coral reef systems, with implications for both population dynamics and the role of mesopredatory fishes in reef ecosystems. This study quantifies the antipredator behaviours mesopredatory fishes exhibit towards the presence of large coral reef carnivores and compares these behavioural responses to those elicited by the presence of snorkelers. Here, we used snorkelers and animated life-size models of the blacktip reef shark (Carcharhinus melanopterus) to simulate potential predatory threats to mesopredatory reef fishes (lethrinids, lutjanids, haemulids and serranids).

View Article and Find Full Text PDF

Recreational fishing waste, produced from processing catches at shore-based fish cleaning facilities and discarded into adjacent waters, is foraged by various aquatic species. However, the potential alterations to the diet of consumers of these resources are poorly studied. Smooth stingrays (Bathytoshia brevicaudata) are a large demersal mesopredatory ray species and common scavenger of recreational fishing discards around southern Australia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!