A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unveiling the photoluminescence regulation of colloidal perovskite quantum dots via defect passivation and lattice distortion by potassium cations doping: Not the more the better. | LitMetric

Unveiling the photoluminescence regulation of colloidal perovskite quantum dots via defect passivation and lattice distortion by potassium cations doping: Not the more the better.

J Colloid Interface Sci

Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China. Electronic address:

Published: August 2021

In this work, we have first demonstrated that the potassium cation doping effect on photoluminescence (PL) regulation of CHNHPbBr (CHNH=MA) colloidal perovskite quantum dots (QDs) is significantly different from the other alkali cation doping effects. The PL intensity will be generally enhanced with the increase doping amounts of other alkali cations. Herein, we have unveiled that the PL of the potassium-doped perovskite QDs is initially prompted by the potassium ions doping and then inhibited with further growing doping amount of the potassium ions. Furthermore, we have also demonstrated that the PL inhibition phenomenon is ascribed as quick trapping of redundant photogenerated electrons by the trap states after huge amount doping besides defect passivation and octahedral structure distortion induced by the initial doping. At the same time, the specific excited state transient absorption and the lifetime of MAKPbBr also confirm that the radiation recombination process is enhanced via defect passivation and lattice distortion, which is induced by moderate potassium cations doping. In addition, the PL of colloidal perovskite quantum dots can be adjusted from orange to cyan within the wavelength range of 300 nm - 600 nm and exhibit better stability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.03.128DOI Listing

Publication Analysis

Top Keywords

colloidal perovskite
12
perovskite quantum
12
quantum dots
12
defect passivation
12
doping
9
photoluminescence regulation
8
passivation lattice
8
lattice distortion
8
potassium cations
8
cations doping
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!