Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Endothelial cells, due to heterogeneity in the cell structure, can potentially form an inhomogeneous on structural and mechanical properties of the inner layer of the capillaries. Using quantitative nanomechanical mapping mode of atomic force microscopy, the parameters of the structural, elastic, and adhesive properties of the cell surface for living and glutaraldehyde-fixed human umbilical vein endothelial cells were studied. A significant difference in the studied parameters for three cell surface zones (peripheral, perinuclear, and nuclear zones) was established. The perinuclear zone appeared to be the softest zone of the endothelial cell surface. The heterogeneity of the endothelial cell mechanical properties at the nanoscale level can be an important mechanism in regulating the endothelium functions in blood vessels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mvr.2021.104168 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!