Cyano-Isocyanide Iridium(III) Complexes with Pure Blue Phosphorescence.

Inorg Chem

Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Room 112, Houston, Texas 77204-5003, United States.

Published: May 2021

In this paper, we report a series of six neutral, blue-phosphorescent cyclometalated iridium complexes of the type Ir(C^Y)(CNAr)(CN). The cyclometalating ligands in these compounds (C^Y) are either aryl-substituted 1,2,4-triazole or NHC ligands, known to produce complexes with blue phosphorescence. These cyclometalating ligands are paired with π-acidic, strongly σ-donating cyano and aryl isocyanide (CNAr) ancillary ligands, the hypothesis being that these ancillary ligands would destabilize the higher-lying ligand-field (-) excited states, allowing efficient blue photoluminescence. The compounds are prepared by substituting the cyanide ancillary ligand onto a chloride precursor and are characterized by NMR, mass spectrometry, infrared spectroscopy, and, for five of the compounds, by X-ray crystallography. Cyclic voltammetry establishes that these compounds have large HOMO-LUMO gaps. The mixed cyano-isocyanide compounds are weakly luminescent in solution, but they phosphoresce with moderate to good efficiency when doped into poly(methyl methacrylate) films, with Commission Internationale de L'Eclairage coordinates that indicate deep blue emission for five of the six compounds. The photophysical studies show that the photoluminescence quantum yields are greatly enhanced in the cyano complexes relative to the chloride precursors, affirming the benefit of strong-field ancillary ligands in the design of blue-phosphorescent complexes. Density functional theory calculations confirm that this enhancement arises from a significant destabilization of the higher-energy ligand-field states in the cyanide complexes relative to the chloride precursors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.1c00103DOI Listing

Publication Analysis

Top Keywords

ancillary ligands
12
blue phosphorescence
8
cyclometalating ligands
8
complexes relative
8
relative chloride
8
chloride precursors
8
complexes
6
ligands
6
compounds
6
cyano-isocyanide iridiumiii
4

Similar Publications

Polarity reversal, or "umpolung", is a widely acknowledged strategy to allow organic functional groups amenable to react in alternative ways to the usual preference set by their electronic features. In this article, we demonstrate that cyclohexyne umpolung, realized through complexation to zirconocene, makes the small strained cycloalkyne amenable to C-F bond functionalisation. Such strong bond activation chemistry is unprecedented in "free" aryne and strained alkyne chemistry.

View Article and Find Full Text PDF

Exploring Singlet Carbyne Anions and Related Low-Valent Carbon Species Utilizing a Cyclic Phosphino Substituent.

Acc Chem Res

January 2025

Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.

ConspectusThe advancement of synthetic methodologies is fundamentally driven by a deeper understanding of the structure-reactivity relationships of reactive key intermediates. Carbyne anions are compounds featuring a monovalent anionic carbon possessing four nonbonding valence electrons, which were historically confined to theoretical constructs or observed solely within the environment of gas-phase studies. These species possess potential for applications across diverse domains of synthetic chemistry and ancillary fields.

View Article and Find Full Text PDF

Unguarded liabilities: complex amino acid dependence exposes unique avenues of inhibition.

Front Antibiot

May 2024

Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States.

Recent reports from the Centers for Disease Control and Prevention approximate 500,000 cases of Lyme disease in the United States yearly, a significant economic burden on the healthcare system. The standard treatment for Lyme disease includes broad-spectrum antibiotics, which may be administered for extensive periods of time and result in significant impacts to the patient. Recently, we demonstrated that , the causative agent of Lyme disease, is uniquely dependent upon peptide acquisition via an oligopeptide transport (Opp) system.

View Article and Find Full Text PDF

The Midas Touch by Iridium: A Second Near-Infrared Aggregation-Induced Emission-Active Metallo-Agent for Exceptional Phototheranostics of Breast Cancer.

J Am Chem Soc

January 2025

Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China.

Developing small organic molecular phototheranostic agents with second near-infrared (NIR-II) aggregation-induced emission (AIE) is paramount for the phototriggered diagnostic imaging and synchronous in situ therapy of cancer via an excellent balance of the excited states energy dissipations. In this study, a multifunctional iridium(III) complex is exploited by the coordination of an AIE-active N^N ancillary ligand with a trivalent iridium ion. The resultant complex DPTPzIr significantly outperforms its parent ligand in terms of absorption/emission wavelengths, reactive oxygen species (ROS) production, and photothermal conversion, which simultaneously endow DPTPzIr nanoparticles with matched absorption peak to commercial 808 nm laser, the longest NIR-II emission peak (above 1100 nm) among those previously reported AIE iridium(III) complexes, potentiated type-I ROS generation, and as high as 60.

View Article and Find Full Text PDF

The engineering of charge transport materials, with electronic characteristics that result in effective charge extraction and transport dynamics, is pivotal for the realization of efficient perovskite solar cells (PSCs). Herein, we elucidate the critical role of terminal substituent methoxy groups (-OCH) on the bandgap tuning of the spiro-like hole transport materials (HTMs) to realize performant and cost-effective PSCs. By considering spiro-OMeTAD as the benchmark HTM, we kept the backbone of spiro while replacing diphenylamine with phenanthrenimidazole.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!