We report a dramatic effect on product outcomes of the lithium ion enabled amino-Cope-like anionic asymmetric cascade when different γ-dienolate heteroatom substituents are employed. For dienolates with azide, thiomethyl, and trifluoromethylthiol substituents, a Mannich/amino-Cope/cyclization cascade ensues to form chiral cyclohexenone products with two new stereocenters in an -relationship. For fluoride-substituted nucleophiles, a Mannich/amino-Cope cascade proceeds to afford chiral acyclic products with two new stereocenters in a -relationship. Bromide- and chloride-substituted nucleophiles appear to proceed via the same pathway as the fluoride albeit with the added twist of a cyclization to yield chiral cyclopropane products with three stereocenters. When this same class of nucleophiles is substituted with a γ-nitro group, the Mannich-initiated cascade is now diverted to a β-lactam product instead of the amino-Cope pathway. These anionic asymmetric cascades are solvent- and counterion-dependent, with a lithium counterion being essential in combination with etheral solvents such as MTBE and CPME. By altering the geometry of the imine double bond from to , the configurations at the and stereocenters are flipped. Mechanistic, computational, substituent, and counterion studies suggest that these cascades proceed via a common Mannich-product intermediate, which then proceeds via either a chair ( = N, SMe, or SCF) or boat-like ( = F, Cl, or Br) transition state to afford amino-Cope-like products or β-lactam in the case of = NO.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.1c00745DOI Listing

Publication Analysis

Top Keywords

anionic asymmetric
8
products stereocenters
8
stereocenters -relationship
8
dramatic γ-heteroatom
4
γ-heteroatom dienolate
4
dienolate substituents
4
substituents counterion
4
counterion assisted
4
assisted asymmetric
4
asymmetric anionic
4

Similar Publications

The title compound, {(CHNO)[SnBr]} , is a layered hybrid perovskite crystallizing in the monoclinic space group 2/. The asymmetric unit consists of one HC-O-NH -CH cation (MeHA), one Sn atom located on a twofold rotation axis, and two Br atoms. The Sn atom has a distorted octa-hedral coordination environment formed by the bromido ligands.

View Article and Find Full Text PDF

Reaction of Co(NCS) with 4-methyl-pyridine in water leads to the formation of single crystals of the title compound, [Co(NCS)(CHN)] . The asymmetric unit consists of two crystallographically independent thio-cyanate anions and two crystallographically independent 4-methyl-pyridine coligands in general positions, as well as of two different Co cations, of which one is located on a twofold rotational axis, whereas the second occupies a center of inversion. The methyl H atoms in both 4-methyl-pyridine ligands are disordered and were refined using a split model.

View Article and Find Full Text PDF

The asymmetric unit of the title compound, CHN·Br·CFI, contains one 2,2,6,6 tetra-methyl-piperidine-1-ium cation, one 1,2,3,4-tetra-fluoro-5,6-di-iodo-benzene mol-ecule, and one uncoordinated bromide anion. In the crystal, the bromide anions link the 2,2,6,6-tetra-methyl-piperidine mol-ecules by inter-molecular C-H⋯Br and N-H⋯Br hydrogen bonds, leading to dimers, with the coplanar 1,2,3,4-tetra-fluoro-5,6-di-iodo-benzene mol-ecules filling the space between them. There is a π-π interaction between the almost parallel benzene rings [dihedral angle = 10.

View Article and Find Full Text PDF

Synthesis, crystal structure and thermal properties of poly[di-μ-bromido-(μ-2,5-di-methyl-pyrazine)cadmium(II)].

Acta Crystallogr E Crystallogr Commun

January 2025

Institut für Anorganische Chemie, Universität Kiel, Max-Eyth.-Str. 2, 24118 Kiel, Germany.

The title compound, [CdBr(CHN)] , was prepared by the reaction of cadmium bromide with 2,5-di-methyl-pyrazine in water. Its asymmetric unit consists of one Cd cation and one 2,5-di-methyl-pyrazine ligand that are located on a crystallographic mirror plane as well as one bromide anion that occupies a general position. The Cd cations are sixfold coordinated by four bromide anions and two 2,5-di-methyl-pyrazine ligands within slightly distorted -CdBrN octa-hedra.

View Article and Find Full Text PDF

Dipole Potential of Monolayers with Biologically Relevant Lipid Compositions.

Molecules

December 2024

Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal.

The membrane dipole potential that arises from the interfacial water and constitutive dipolar groups of lipid molecules modulates the interaction of amphiphiles and proteins with membranes. Consequently, its determination for lipid mixtures resembling the existing diversity in biological membranes is very relevant. In this work, the dipole potentials of monolayers, formed at the air-water interface, from pure or mixed lipids (1-palmitoyl-2-oleoyl--glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl--glycero-3-phosphoethanolamine (POPE), 1-palmitoyl-2-oleoyl--glycero-3-phosphatidyserine (POPS), sphingomyelin (SpM) and cholesterol) were measured and correlated with the mean area per lipid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!