A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Viscozyme L hydrolysis and Lactobacillus fermentation increase the phenolic compound content and antioxidant properties of aqueous solutions of quinoa pretreated by steaming with α-amylase. | LitMetric

In this work, red quinoa was successively subjected to α-amylase steaming, complex enzyme Viscozyme (R) L hydrolysis, and lactic acid bacteria (LAB) fermentation. The total phenolic compound content (TPC), flavonoid content (TFC), and antioxidant capacities of the solvent-extractable (free) and bound fractions and the individual phenolic compounds released were determined. Compared to steaming with α-amylase, enzymatic hydrolysis and fermentation of quinoa resulted in approximately 82.6, 26.9, 36.3, and 45.2% increases in the TPC (the sum of free and bound fractions), TFC, DPPH, and ORAC values, respectively. HPLC-QqQ-MS/MS analysis showed that enzymolysis and fermentation increased the content of protocatechuic acid, catechin, procyanidin B , and quercetin by 126.3, 101.9, 524, and 296.3%, respectively. Moreover, a major proportion of individual phenolic compounds existed as bound form. The results indicated that complex enzymatic hydrolysis and LAB fermentation were practical and useful to release promising polyphenols. This research provides a basis for the processing of quinoa beverages rich in phenolic compounds. PRACTICAL APPLICATION: In this work, liquefying with α-amylase, hydrolyzing with cellulolytic enzyme mixture, and fermenting with Lactic acid bacteria (LAB), successively, were exploited to process quinoa. This is an innovative method of quinoa processing to produce beverage products. Complex enzymatic hydrolysis and fermentation with LAB can significantly enhance phenolic compound, especially protocatechuic acid, catechin, procyanidin B , and quercetin. In additional, LAB fermentation is very beneficial to improve the antioxidant activity of quinoa. We also found that a major proportion of phenolic compounds existed as bound forms in quinoa.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1750-3841.15680DOI Listing

Publication Analysis

Top Keywords

phenolic compounds
16
phenolic compound
12
lab fermentation
12
enzymatic hydrolysis
12
viscozyme hydrolysis
8
compound content
8
quinoa
8
steaming α-amylase
8
lactic acid
8
acid bacteria
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!