A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Computational Fluid Dynamics Study of Cerebral Thromboembolism Risk in Ventricular Assist Device Patients: Effects of Pulsatility and Thrombus Origin. | LitMetric

Computational Fluid Dynamics Study of Cerebral Thromboembolism Risk in Ventricular Assist Device Patients: Effects of Pulsatility and Thrombus Origin.

J Biomech Eng

Arnold Palmer Children's Hospital, 1222 South Orange Avenue, Orlando, FL 32806; College of Medicine, University of Central Florida, 6850 Lake Nona Boulevard, Orlando, FL 32827.

Published: September 2021

This study investigates the hypothesis that by surgically manipulating the outflow graft (OG) implantation during ventricle assist device placement, it may be possible to reduce the risk of cerebral embolism. We investigate this hypothesis using a computational approach on a patient-specific basis under fully pulsatile hemodynamics with a multiscale computational fluid dynamics model incorporating a coupled Eulerian-Lagrangian scheme that effectively tracks emboli in the fluid domain. Blood is modeled as a non-Newtonian fluid based on the hematocrit level. Preliminary flow analysis shows that depending on the anastomosis angle the left ventricular assist device (LVAD) can enhance the flow to the cerebral circulation by nearly 31%. Z-test results suggest that unsteady-flow modeling ought to be an integral part of any cardiovascular simulation with residual ventricular function. Assuming unsteady-flow conditions, a shallow LVAD outflow graft anastomosis angle is the most optimal if thrombi are released from the aortic-root reducing cerebral embolization incidence to 15.5% and from the ventricle to 17%, while a more pronounced anastomosis angle becomes advantageous when particles originate from the LVAD with an embolization rate of 16.9%. Overall, computations suggest that a pronounced LVAD anastomosis angle is the better implementation. Unsteady modeling is shown to be necessary for the presence of significant antegrade aortic-root flow which induces cyclical flow patterns due to residual pulsatility. On the other hand, depending on thrombus origin and ventricular assist devices (VAD) anastomosis angle there is a strong tradeoff in embolization rates.

Download full-text PDF

Source
http://dx.doi.org/10.1115/1.4050819DOI Listing

Publication Analysis

Top Keywords

anastomosis angle
20
ventricular assist
12
assist device
12
computational fluid
8
fluid dynamics
8
thrombus origin
8
outflow graft
8
anastomosis
5
angle
5
dynamics study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!