The synthesis and characterization of a new aluminophosphate, Na[AlPO], obtained as single crystals in the same experiment together with Cl-sodalite, Na[AlSiO]Cl, is reported. Na[AlPO], with a strongly pseudo-orthorhombic lattice, is described by the monoclinic crystal structure established in the study of a pseudomerohedric microtwin. The design of Na[AlPO] can be interpreted as an alternative to sodalite, with a monoclinic (pseudo-orthorhombic) 2×4×1 super-structure and unit-cell parameters multiples of those of sodalite: a ≃ 2a, b ≃ 4b and c ≃ c. The triperiodic framework is built by AlO, AlO and PO polyhedra having vertex-bridging contacts. While all the oxygen vertices of the Al-centred octahedra and tetrahedra are shared with phosphate groups, some of the PO tetrahedra remain `pendant', e.g. containing vertices not shared with other polyhedra of the aluminophosphate construction. Na atoms occupy framework channels and cavities surrounded by eight-, six- and four-membered windows with maximal effective pore widths of 4.86 × 3.24 and 4.31 × 3.18 Å. The generalized framework density is equal to 19.8, which means that the compound may be classified as a microporous zeolite. The Na[AlPO] crystal structure is discussed as being formed from octahedral rods arranged in two perpendicular directions, similar to the rods elongated in one direction in the NASICON-type compounds, which have been intensively investigated as promising materials for batteries. Analogous properties can be expected for phases with a modified composition of the NaAlPO topology, where the Al atoms at the centres of octahedra are replaced by Fe, V or Cr.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S2052520621001785 | DOI Listing |
Symmetry-breaking spin-state transitions in two of three isostructural salts of MnIII spin-crossover cations, [MnIII(3-OMe-5-NO2-sal2323)]+, with heavy anions are reported. The ReO4- salt undergoes two-step spin crossover which is coupled with a re-entrant symmetry-breaking structural phase transition between a high temperature phase (S = 2, C2/c), an intermediate ordered phase (S = 1/S = 2, P21/c), and a low temperature phase (S = 1, C2/c). The AsF6- complex undergoes an abrupt transition between a high temperature phase (S = 2, C2/c) and a low temperature ordered phase (S = 1/S = 2, P-1).
View Article and Find Full Text PDFJMIR Form Res
January 2025
Center for Cancer Health Equity, Rutgers Cancer Institute, New Brunswick, NJ, United States.
Background: Cervical cancer disparities persist among minoritized women due to infrequent screening and poor follow-up. Structural and psychosocial barriers to following up with colposcopy are problematic for minoritized women. Evidence-based interventions using patient navigation and tailored telephone counseling, including the Tailored Communication for Cervical Cancer Risk (TC3), have modestly improved colposcopy attendance.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
The photophysical properties of six new luminescent tetrahedral Zn(II) complexes are presented that survey two electronic donor moieties (phenolate and carbazolate) and three electronic acceptors (pyridine, pyrimidine, and pyrazine). A unique ligand based on an -terphenyl motif forms an eight-membered chelate, which enhances through-space charge-transfer (CT) interactions by limiting through-bond conjugation between the donor and acceptor. A single isomeric product was obtained in yields up to 90%.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Institute of Inorganic Chemistry, Czech Academy of Sciences, 250 68 Husinec-Řež, Czech Republic.
Co-pyrolysis reactions of BBr with SBr at 350 °C yielded the brominated thiaboranes -SBBr (1), -1-SBBr (2) and -SBBr (3), confirmed by high-resolution mass spectrometry, experimental and computational B NMR spectroscopy. The strong Br(σ-hole)⋯Br(ring) attraction has been the decisive energy contribution in the crystal of 1.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Physics, National University of Singapore, Singapore 117551, Singapore.
Phase separation plays a crucial role in many natural and industrial processes, such as the formation of clouds and minerals and the distillation of crude oil. In metals and alloys, phase separation is an important approach often utilized to improve their mechanical strength for use in construction, automobile, and aerospace manufacturing. Despite its importance in many processes, the atomic details of phase separation are largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!