Membrane separation has been considered as one of the most revolutionary technologies for the removal of oils, dyes, or other pollutants from wastewater. However, most membranes still face great challenges in water permeability, antifouling property, and even antibiotic ability. Possessing a pathogen-repellent surface is of great significance as it can enable membranes to minimize the presence of active viral pathogens. Herein, we demonstrate a distinct design with a molecular dynamics simulation-guided experiment for the surface domination of antibiotic zwitterionic nanogel membranes. The zwitterionic nanoparticle gel (ZNG)/Cu/glutaraldehyde (GA) synergy system is first simulated by introducing a ZNG into a preset CuCl brine solution and into a GA ethanol solution, in which the nanogel is observed to initially swell and subsequently shrink with the increase of GA concentration, leading to the membrane surface structure transition. Then, the corresponding experiments are performed under strict conditions, and the results suggest the surface structure transition from nanoparticles to network nanoflowers, which are consistent with the simulated results. The obtained network structure membrane with superhydrophilic and underwater superoleophobic abilities can significantly enhance the water permeability as high as almost 40% with its original rejection rate in comparison with unoptimizable ZNG-PVDF (polyvinylidene difluoride) membranes. Moreover, the obtained membrane achieves additional excellent antibiofouling capacity with the antibiotic efficiency exceeding 99.3%, manifesting remarkable potential for disinfection applications. By comparison, the conventional antibiotic methods generally improve the membrane's antibiotic property solely but can hardly improve the other properties of the membrane. That is to say, our simulation combined with the experimental strategy significantly improved the zwitterionic membrane property in this work, which provides a new perspective on the design of high-performance functional materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c00378 | DOI Listing |
J Chromatogr A
December 2024
I. U. CINQUIMA, Analytical Chemistry Group (TESEA), Dept. Analytical Chemistry, Faculty of Sciences, University of Valladolid 47011, Valladolid, Spain. Electronic address:
The simultaneous separation of the enantiomers of six anticoagulant rodenticides, derived from 4-hydroxycoumarin, has been studied in this work. Ten different stationary phases (zwitterionic, Pirkle-type, polysaccharides and macrocyclic antibiotics derivatives) were evaluated by using supercritical fluid chromatography coupled to two different detectors (circular dichroism and mass spectrometry-single quadrupole). The effect of the type of organic modifier and temperature on the chiral separation was investigated, and the best results were obtained with the column Regis S,S-Whelk-O1 at 25 °C when using a gradient elution program with methanol as organic modifier.
View Article and Find Full Text PDFJ Mol Model
December 2024
PG & Research Department of Physics, Government Arts College for Men, Tamil Nadu, Krishnagiri, 635001, India.
Context: Schiff bases, which have intriguing properties in many areas, have been studied extensively in recent years due to their structural properties and biological activities. In this research, a novel water-soluble Schiff base complex, Catena-((μ-(E)-2-((4-methoxy-2-oxidobenzylidene) ammonio) ethane-1-sulfonato potassium, CHKNOS (CMOAESP), was synthesized by a one-step condensation reaction of 2-hydroxy-4-methoxy benzaldehyde and taurine with the yield of 65%, 0.333 g.
View Article and Find Full Text PDFActa Crystallogr C Struct Chem
January 2025
Institute of General and Ecological Chemistry, Faculty of Chemistry, Łódź University of Technology, Żeromskiego 116, 90-924 Łódź, Poland.
Three new thiosemicarbazide derivatives are described in terms of synthesis, structure and biological activity. N'-(Morpholine-4-carbonothioyl)-4-(4-phenylpiperazin-1-yl)picolinohydrazonamide 2-methyltetrahydrofuran hemisolvate, 2CHNOS·CHO, 1, determined at 100 K, has orthorhombic (Pca2) symmetry and exhibits disorder. 4-(4-Phenylpiperazin-1-yl)-N'-(piperidine-1-carbonothioyl)picolinohydrazonamide-dimethylformamide-water (1/1/0.
View Article and Find Full Text PDFBiomater Adv
March 2025
Department of Basic, Zhejiang Pharmaceutical University, Ningbo 315500, PR China. Electronic address:
The flexible surface and chemical compatibility of hydrogels render them particularly appealing for research and development in antibacterial materials. However, designing tough hydrogels with multiple antibacterial mechanisms simultaneously remains a challenge. Inspired by the human skin, a hydrogel with bacterial antifouling, detection, and inactivation functions has been prepared using zwitterionic [2-(methylacrylyl) ethyl] dimethyl-(3-propyl sulfonate) ammonium hydroxide (SBMA) as the matrix and cadmium telluride quantum dots functionalised with cysteamine (CA-CdTe QDs) as the filler through micelle copolymerisation technology, achieving the integration of multiple antimicrobial mechanisms.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
February 2025
Department of Polymer Science, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600025, India. Electronic address:
Biosurfactant based biostimulants plays a vital role in agriculture filed by enhancing the soil quality, promote plant growth, and eliminate plant pathogens, and increasing nutrient uptake. This manuscript describes the synthesis of trimesic based lithocholic ester functionalized amphiphiles (TMLCEA) with oppositely charged head groups using thiol-yne click chemistry, which is an effective and simple approach. The trimesic based lithocholic ester functionalized zwitterionic penicillamine (TMLCEPA), cationic cysteamine·HCl (TMLCECy), and anionic thiomalic acid (TMLCETM) exhibited hierarchically self-assembled microstructures from below to above the CMC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!