Insomnia is an anabatic epidemiology, while the mechanism is extremely complicated; it remains one of the major scientific challenges in life sciences. Because of the advantage of having a similar genetic background and circadian rhythm as those of humans, the model organism is hugely popular in sleep-related drug screening studies. Seven-day-old virgin was used to establish the sleep deprivation model by repeated light stimulation at night. Using PySolo activity monitoring system and activity as indices, the effective fractions of Zhi-Zi-Hou-Po decoction (ZZHPD) for insomnia were screened; the content of monoamine neurotransmitters dopamine (DA), 5-hydroxyindole-3-acetic acid (5-HIAA), Homovanillic acid (HVA), and 5-hydroxytryptamine (5-HT) in the brain of were determined by high-performance liquid chromatography-electro-chemical detection. The herb-compound-target-disease target network were further constructed through network pharmacology to identify the potential targets and pathways of ZZHPD in the intervention of insomnia. Finally, the molecular docking method was used for evaluating the binding characteristics of important compounds from ZZHPD with related targets. The results showed that a certain dose of ZZHPD and its petroleum ether, dichloromethane, ethyl acetate, and -butanol fractions could improve sleep. The dichloromethane fraction from ZZHPD extracts showed the best anti-insomnia effect among all extracts. It can also reduce the content of DA and HVA in the brain of and increase 5-HT and 5-HIAA levels. The network pharmacology showed that the main active ingredients in ZZHPD included magnolol, honokiol, hesperidin, and so forth. According to the screening conditions, there were 71 targets and the result of KEGG enrichment analysis revealed that 73 pathways were associated with insomnia, which were primarily involved in inflammatory response, central neurotransmitter regulation, and apoptosis to relieve insomnia. The molecular docking results clarified that naringenin and apigenin have an intimate relationship with GABA receptor, histamine H1, orexin receptor type 2, and interleukin-6. The mechanism of relieving insomnia is the result of the interaction of multi-components, multi-targets, and multi-pathways, which provides a certain theoretical basis for the treatment of insomnia and related diseases as well as clinical research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8028125PMC
http://dx.doi.org/10.1021/acsomega.1c00445DOI Listing

Publication Analysis

Top Keywords

network pharmacology
12
fractions zhi-zi-hou-po
8
zhi-zi-hou-po decoction
8
molecular docking
8
insomnia
7
zzhpd
6
integrated screening
4
screening effective
4
effective anti-insomnia
4
anti-insomnia fractions
4

Similar Publications

Untangling areas of improvement in secondary prevention of ischemic stroke in patients with atrial fibrillation.

Sci Rep

December 2024

Health Services Research and Pharmacoepidemiology Unit, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), Avenida Cataluña, 21, 46020, Valencia, Spain.

Improvement of post-stroke outcomes relies on patient adherence and appropriate therapy maintenance by physicians. However, comprehensive evaluation of these factors is often overlooked. This study assesses secondary stroke prevention by differentiating patient adherence to antithrombotic treatments (ATT) from physician-initiated interruptions or switches.

View Article and Find Full Text PDF

This study investigates the potential treatment of breast cancer utilizing Gentiana robusta King ex Hook. f. (QJ) through an integrated approach involving network pharmacology, molecular docking, and molecular dynamics simulation.

View Article and Find Full Text PDF

Electrical excitability of neuronal networks based on the voltage threshold of electrical stimulation.

Sci Rep

December 2024

State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, China.

Microelectrode arrays (MEAs) have been widely used in studies on the electrophysiological features of neuronal networks. In classic MEA experiments, spike or burst rates and spike waveforms are the primary characteristics used to evaluate the neuronal network excitability. Here, we introduced a new method to assess the excitability using the voltage threshold of electrical stimulation.

View Article and Find Full Text PDF

CD73, an ectoenzyme responsible for adenosine production, is often elevated in immuno-suppressive tumor environments. Inhibition of CD73 activity holds great promise as a therapeutic strategy for CD73-expressing cancers. In this study, we have developed a therapeutic anti-human CD73 antibody cocktail, HB0045.

View Article and Find Full Text PDF

Alzheimer's is an advanced nervous disorder related to aging. The present study aimed to determine the effect of eight-week aerobic training, along with the consumption of Linalool, Cineole, and β-Bourbonene, on the prevention and improvement of Alzheimer's disease. Mice were randomly assigned to 8 groups: control group, mice induced with Alzheimer's disease treated with β-amyloid (Alzheimer group), Alzheimer's mice treated with bioactive compounds of herbal medicine (Linalool with a concentration of 25 mg/kg, Cineole with a concentration of 100 mg/kg, and β-Bourbonene with a concentration of 10 μg/ml) by gavage for 8 weeks (Alzheimer+Biocompounds group), Alzheimer's mice treated with aerobic exercise with a moderate intensity treadmill for 8 weeks (Alzheimer's+Training group), Alzheimer's mice treated with bioactive compounds of herbal medicine and aerobic exercise for 8 weeks (Alzheimer+Biocompounds+Training group), healthy mice initially treated with bioactive compounds of herbal medication (Linalool with a concentration of 25 mg/kg, Cineol with a concentration of 100 mg/kg, and β-Bourbonene with a concentration of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!