Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Multiple organ dysfunction syndrome (MODS) is one of the most common causes of death in critically ill children. However, despite decades of clinical trials, there are no comprehensive approaches to the management of MODS or effective targeted therapies that have consistently improved outcomes. Better understanding the heterogeneity of MODS and characterizing subgroups of MODS patients could improve our understanding of the syndrome and help us develop new management strategies. We analyzed a cohort of 5,297 children with MODS from two children's hospitals and used subgraph-augmented non-negative matrix factorization (SANMF) to identify unique temporal patterns in organ dysfunction across four novel subgroups. We demonstrate that these subgroups are composed of patients with distinct clinical characteristics and are independently predictive of clinical outcomes. Our work suggests that these subgroups represent four relevant phenotypes of pediatric MODS that could be used to identify novel management strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8030696 | PMC |
http://dx.doi.org/10.1109/bibm47256.2019.8983126 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!