Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) initiates infection by attachment of the surface-exposed spike glycoprotein to the host cell receptors. The spike glycoprotein (S) is a promising target for inducing immune responses and providing protection; thus the ongoing efforts for the SARS-CoV-2 vaccine and therapeutic developments are mostly spiraling around S glycoprotein. The matured functional spike glycoprotein is presented on the virion surface as trimers, which contain two subunits, such as S1 (virus attachment) and S2 (virus fusion). The S1 subunit harbors the N-terminal domain (NTD) and the receptor-binding domain (RBD). The RBD is responsible for binding to host-cellular receptor angiotensin-converting enzyme 2 (ACE2). The NTD and RBD of S1, and the S2 of S glycoprotein are the major structural moieties to design and develop spike-based vaccine candidates and therapeutics. Here, we have identified three novel epitopes (20-amino acid peptides) in the regions NTD, RBD, and S2 domains, respectively, by structural and immunoinformatic analysis. We have shown as a proof of principle in the murine model, the potential role of these novel epitopes in-inducing humoral and cellular immune responses. Further analysis has shown that RBD and S2 directed epitopes were able to efficiently inhibit the replication of SARS-CoV-2 wild-type virus suggesting their role as virus entry inhibitors. Structural analysis revealed that S2-epitope is a part of the heptad repeat 2 (HR2) domain which might have plausible inhibitory effects on virus fusion. Taken together, this study discovered novel epitopes that might have important implications in the development of potential SARS-CoV-2 spike-based vaccine and therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8032902PMC
http://dx.doi.org/10.3389/fimmu.2021.613045DOI Listing

Publication Analysis

Top Keywords

novel epitopes
16
immune responses
12
spike glycoprotein
12
severe acute
8
acute respiratory
8
respiratory syndrome
8
syndrome coronavirus
8
virus fusion
8
ntd rbd
8
spike-based vaccine
8

Similar Publications

Identification of novel KRAS neoantigen specific TCRs and a strategy to eliminate off-target recognition.

J Transl Med

January 2025

Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.

Background: T cell receptor (TCR)-engineered T cells targeting neoantigens originated from mutations in KRAS gene have demonstrated promising outcomes in clinical trials against solid tumors. However, the challenge lies in developing tumor-specific TCRs that avoid cross-reactivity with self-antigens to minimize the possibility of severe clinical toxicities. Current research efforts have been put towards strategies to eliminate TCR off-target recognition.

View Article and Find Full Text PDF

Circulating sexual stages of ) can be transmitted from humans to mosquitoes, thereby furthering the spread of malaria in the population. It is well established that antibodies can efficiently block parasite transmission. In search for naturally acquired antibodies targets on sexual stages, we established an efficient method for target-agnostic single B cell activation followed by high-throughput selection of human monoclonal antibodies (mAbs) reactive to sexual stages of in the form of gametes and gametocyte extracts.

View Article and Find Full Text PDF

Gene expression is regulated by chromatin DNA methylation and other features, including histone post-translational modifications (PTMs), chromatin remodelers and transcription factor occupancy. A complete understanding of gene regulation will require the mapping of these chromatin features in small cell number samples. Here we describe a novel genome-wide chromatin profiling technology, named as Nicking Enzyme Epitope targeted DNA sequencing (NEED-seq).

View Article and Find Full Text PDF

In Silico Subtractive Proteome Analysis to Design Multi-Epitope-Based Subunit Vaccine against .

J Microbiol Biotechnol

November 2024

Fatemah AlMalki, Biology Department, College of Science and Humanities- Al Quwaiiyah, Shaqra University, Al Quwaiiyah 19257, Saudi Arabia.

is a gram-negative, facultatively anaerobic bacterium typically found in the oropharynx and respiratory tract of humans. It is responsible for various infections, including head-and-neck infections, pericarditis, and abscesses of the deltoid, perirenal tissue, brain, and liver. Increasing antibiotic resistance requires urgent identification of novel drug targets to fight this bacterium.

View Article and Find Full Text PDF

Structural analyses of Cryptosporidium parvum epitopes reveal a novel scheme of decapeptide binding to H-2K.

J Struct Biol

January 2025

State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China. Electronic address:

Cryptosporidium has gained much attention as a major cause of diarrhea worldwide. Here, we present the first structure of H-2K complexed with a decapeptide from Cryptosporidium parvum Gp40/15 protein (Gp40/15-VTF10). In contrast to all published structures, the aromatic residue P3-Phe of Gp40/15-VTF10 is anchored in pocket C rather than the canonical Y/F at P5 or P6 reported for octapeptides and nonapeptides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!