Genetic selection for earlier sexual maturation and extended production cycles in laying hens has significantly improved reproductive efficiency. While limited emphasis has been placed on the underlying physiological changes, we hypothesize that modifications in the control of the hypothalamic-pituitary gonadal (HPG) axis have occurred. Thus, three strains of White leghorn derivatives were followed from hatch to 100 weeks of age (woa), including Lohmann LSL-lite ( = 120) as current commercial hens, heritage Shaver White leghorns ( = 100) as 2000s commercial equivalents, and Smoky Joe hens ( = 68) as 1960s commercial equivalents. Body weight (BW) and egg production were monitored, and blood samples were collected throughout to monitor estradiol (E) concentrations. Tissue samples were collected at 12, 17, 20, 25, 45, 60, 75, and 100 woa to capture changes in mRNA levels of key genes involved in the HPG axis and monitor ovarian follicular pools. All hens, regardless of strain, age or photoperiod laid their first egg within a 64-gram BW window and, as E levels increased prior to photostimulation (PS) in Lohmann and Shaver hens, a metabolic trigger likely induced sexual maturation. However, increased levels of Opsin 5 (OPN5) were observed during the maturation period. Although an elevation in gonadotrophin-releasing hormone I (GnRH-I) mRNA levels was associated with early maturation, no changes in gonadotrophin-inhibitory hormone (GnIH) mRNA levels were observed. Nonetheless, a significant shift in pituitary sensitivity to GnRH was associated with maturation. Throughout the trial, Lohmann, Shaver, and Smoky Joe hens laid 515, 417, and 257 eggs, respectively ( < 0.0001). Results show that the extended laying persistency in Lohmann hens was supported by sustained pituitary sensitivity to GnRH-I, recurrent elevations in follicle-stimulating hormone (FSH) mRNA levels, and five cyclical elevations in E levels. This was also associated with a consistently higher pool of small white ovarian follicles. In summary, our results demonstrate first that, regardless of photoperiodic cues, meeting a specific narrow body weight threshold is sufficient to initiate sexual maturation in Leghorn chicken derivatives. Furthermore, recurrent increases in E and FSH may be the key to sustain extended laying period, allowing modern layers to double their reproductive capacity compared to their 1960s-counterparts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8027345PMC
http://dx.doi.org/10.3389/fphys.2021.651491DOI Listing

Publication Analysis

Top Keywords

mrna levels
16
sexual maturation
12
control hypothalamic-pituitary
8
hypothalamic-pituitary gonadal
8
hens
8
laying hens
8
hpg axis
8
commercial equivalents
8
smoky joe
8
joe hens
8

Similar Publications

Background And Study Aims: Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease in neonates. In vitro model is an indispensable tool to study the pathogenesis of NEC. This study explored the effects of different stress factors on intestinal injury in vitro.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) represents a chronic metabolic disorder characterized by disrupted carbohydrate and lipid balance, resulting in hyperglycemia. This study evaluated the impact of polysaccharides derived from Cynanchum auriculatum Royle ex Wight (CRP) on mitigating hyperglycemia and modulating intestinal microbiota in T2DM mice. Findings indicated that CRP is mainly linked by →6)α-D-Glcp-(1→ and CRP-H demonstrated greater efficacy than CRP-L in regulating hypoglycemic-related indicators such as serum high-density lipoprotein cholesterol (HDL-c) level.

View Article and Find Full Text PDF

Deleted in malignant brain tumors 1 (DMBT1) gene relate to immune priming and phagocytosis modulation in the small abalone Haliotis diversicolor.

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China. Electronic address:

The small abalone (Haliotis diversicolor) is an economic shellfish cultured in the south coast of China. In recent years, the frequent occurrence of the disease has led to significant mortality in abalone farms. Deleted in malignant brain tumors 1 (DMBT1), a member of the scavenger receptor cysteine-rich (SRCR) protein family, plays an important role in host defense.

View Article and Find Full Text PDF

d-Limonene inhibits cytokines and chemokines expression by regulating NF-kappaB and STAT in HaCat cells and DNCB-induced atopic dermatitis in BALB/c mice.

Int Immunopharmacol

January 2025

School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan; PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City 24205, Taiwan; School of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan. Electronic address:

Background: Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by itching and redness, affecting individuals of all ages and significantly impairing their quality of life. The prevalence of AD is rising, posing serious health concern. Relief of itching is a primary treatment objective; however, steroid treatments can lead to adverse effects, including skin barrier thinning.

View Article and Find Full Text PDF

Toxic-induced cerebellar syndrome (TOICS) poses substantial neurological challenges, given its diverse causes and complex manifestations. Gold nanoparticles (AuNPs) have gained significant attention owing to enhanced biocompatibility for therapeutic interventions. We aimed to investigate the impacts of AuNPs on cerebellar cytomolecular, immunohistochemical and ultrastructural alterations in the context of phenytoin-experimentally induced TOICS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!