It is supposed that the nucleus of the solitary tract (NTS) in the dorsal medulla includes gas sensor cells responsive to hypercapnia or hypoxia in the central nervous system. In the present study, we analyzed cellular responses to hypercapnia and hypoxia in the NTS region of newborn rat preparation. The brainstem and spinal cord were isolated from newborn rat (P0-P4) and were transversely cut at the level of the rostral area postrema. To detect cellular responses, calcium indicator Oregon Green was pressure-injected into the NTS just beneath the cut surface of either the caudal or rostral block of the medulla, and the preparation was superfused with artificial cerebrospinal fluid (25-26°C). We examined cellular responses initially to hypercapnic stimulation (to 8% CO from 2% CO) and then to hypoxic stimulation (to 0% O from 95% O at 5% CO). We tested these responses in standard solution and in two different synapse blockade solutions: (1) cocktail blockers solution including bicuculline, strychnine, NBQX and MK-801 or (2) TTX solution. At the end of the experiments, the superfusate potassium concentration was lowered to 0.2 from 3 mM to classify recorded cells into neurons and astrocytes. Excitation of cells was detected as changes of fluorescence intensity with a confocal calcium imaging system. In the synaptic blockade solutions (cocktail or TTX solution), 7.6 and 8% of the NTS cells responded to hypercapnic and hypoxic stimulation, respectively, and approximately 2% of them responded to both stimulations. Some of these cells responded to low K, and they were classified into astrocytes comprising 43% hypercapnia-sensitive cells, 56% hypoxia-sensitive cells and 54% of both stimulation-sensitive cells. Of note, 49% of the putative astrocytes identified by low K stimulation were sensitive to hypercapnia, hypoxia or both. In the presence of a glia preferential blocker, 5 mM fluoroacetate (plus 0.5 μM TTX), the percentage of hypoxia-sensitive cells was significantly reduced compared to those of all other conditions. This is the first study to reveal that the NTS includes hypercapnia and hypoxia dual-sensitive cells. These results suggest that astrocytes in the NTS region could act as a central gas sensor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8027497PMC
http://dx.doi.org/10.3389/fphys.2021.645904DOI Listing

Publication Analysis

Top Keywords

hypercapnia hypoxia
20
cellular responses
16
newborn rat
12
cells
10
calcium imaging
8
responses hypercapnia
8
hypoxia nts
8
gas sensor
8
nts region
8
hypoxic stimulation
8

Similar Publications

At rest, the menstrual cycle phase impacts ventilation and chemosensitivity. However, during exercise there is inconclusive evidence that the menstrual cycle phase affects ventilation or chemosensitivity. We sought to examine the influence of menstrual phase and hormonal birth control (BC) on chemosensitivity.

View Article and Find Full Text PDF

Arousal-promoting effect of the parabrachial nucleus and the underlying mechanisms: Recent advances.

Prog Neuropsychopharmacol Biol Psychiatry

December 2024

Department of rehabilitation Medicine, SuiNing Central Hospital, The Affiliated Hospital of Chongqing Medical University, SuiNing 629000, China. Electronic address:

The parabrachial nucleus (PBN) is responsible for integrating both internal and external sensory information and controlling/regulating a wide range of physiological processes, such as feeding, thermogenesis, nociceptive and pruritic sensations, and respiration. Recently, the PBN has been found to be involved in mediating wakefulness maintenance, sleep-wake transition, exogenous neuromodulation of awakening, and arousal-promoting process triggered by drastic changes in the internal environments, such as hypercapnia, hypoxia, and hypertension. Multiple neural pathways and subpopulations of neurons are responsible for arousal-promoting effects of the PBN.

View Article and Find Full Text PDF

Exploring the role of aging in the relationship between obstructive sleep apnea syndrome and osteoarthritis: Insights from NHANES data.

Front Med (Lausanne)

November 2024

Department of Trauma Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.

Background: Osteoarthritis (OA) is characterized by high morbidity and disability. While studies have demonstrated that OA is correlated with age-related diseases, few have shown the potential relationship between OA and obstructive sleep apnea syndrome (OSAS). OSAS is characterized by intermittent hypoxia and hypercapnia.

View Article and Find Full Text PDF

Fetal asphyxia, a condition resulting from the combined effects of hypoxia and hypercapnia, leads to approximately 900,000 annual deaths worldwide. One cause is umbilical cord compression during labor-induced uterine contractions, disrupting the transport of metabolites to and from the placenta, and resulting in asphyxia. Current fetal well-being assessment relies on monitoring fetal heart rate and uterine contractions as indicators of oxygen delivery to the brain.

View Article and Find Full Text PDF

Background: Patients afflicted with chronic obstructive pulmonary disease (COPD) frequently manifest acute respiratory failure (ARF), characterized by hypercapnia, hypoxia, malnutrition, muscle weakness, heightened work of breathing (WOB), recurrent acute exacerbations, reliance on mechanical ventilation (MV), and difficulties in the weaning phase. Early implementation of rehabilitation interventions holds promise in mitigating prolonged MV and, consequently, reducing intensive care unit (ICU) morbidity and mortality.

Methodology: A prospective study was undertaken involving COPD type 2 respiratory failure patients receiving MV in an ICU setting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!