AI Article Synopsis

Article Abstract

KCNJ16 encodes K5.1 and acts in combination with K4.1, encoded by KCNJ10, to form an inwardly rectifying K channel expressed at the basolateral membrane of epithelial cells in the distal nephron. This K4.1/K5.1 channel is critical for controlling basolateral membrane potential and K recycling, the latter coupled to Na-K-ATPase activity, which determines renal Na handling. Previous work has shown that Kcnj16 mice and SS rats demonstrate hypokalemic, hyperchloremic metabolic acidosis. Here, we present the first report of a patient identified to have biallelic loss-of-function variants in KCNJ16 by whole exome sequencing who presented with chronic metabolic acidosis with exacerbations triggered by minor infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8484552PMC
http://dx.doi.org/10.1038/s41431-021-00883-0DOI Listing

Publication Analysis

Top Keywords

metabolic acidosis
12
biallelic loss-of-function
8
loss-of-function variants
8
variants kcnj16
8
basolateral membrane
8
kcnj16
4
kcnj16 presenting
4
presenting hypokalemic
4
hypokalemic metabolic
4
acidosis kcnj16
4

Similar Publications

Renal Tubular Acidosis: Core Curriculum 2025.

Am J Kidney Dis

January 2025

Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

Renal tubular acidoses (RTAs) are a subset of non-anion gap metabolic acidoses that result from complex disturbances in renal acid excretion. Net acid excretion is primarily accomplished through the reclamation of sodium bicarbonate and the buffering of secreted protons with ammonia or dibasic phosphate, all of which require a series of highly complex and coordinated processes along the renal tubule. Flaws in any of these components lead to the development of metabolic acidosis and/or a failure to compensate fully for other systemic acidoses.

View Article and Find Full Text PDF

Background: Limited research exists regarding the genetic profile, clinical characteristics, and outcomes of refractory rickets in children from India.

Methods: Patients with refractory rickets aged ≤ 18 years were enrolled. Data regarding clinical features, etiology, genotype-phenotype correlation, and estimated glomerular filtration rate (eGFR) were recorded.

View Article and Find Full Text PDF

Management of SGLT-2 Inhibitors in the Perioperative Period: Withhold or Continue?

Br J Hosp Med (Lond)

January 2025

Department of Anaesthesia, Northumbria Healthcare NHS Foundation Trust, Newcastle-Upon-Tyne, UK.

Sodium-glucose cotransporter 2 (SGLT-2) inhibitors are commonly prescribed in diabetes mellitus and increasingly for cardiorenal protection. They carry the risk of euglycaemic diabetic ketoacidosis (eDKA). Guidelines around the perioperative handling of these medications are limited and some evidence suggests that withholding them can lead to more surgical complications and poorer glycaemic control.

View Article and Find Full Text PDF

Capsaicin Modulates Ruminal Fermentation and Bacterial Communities in Beef Cattle with High-Grain Diet-Induced Subacute Ruminal Acidosis.

Microorganisms

January 2025

Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China.

This study was developed with the goal of exploring the impact of capsaicin on ruminal fermentation and ruminal bacteria in beef cattle affected by high-grain diet-induced subacute ruminal acidosis (SARA). In total, 18 healthy Simmental crossbred cattle were randomized into three separate groups ( = 6/group): (1) control diet (CON; forage-to-concentrate ratio = 80:20); (2) high-grain diet (SARA; forage-to-concentrate ratio = 20:80); and (3) high-grain diet supplemented with capsaicin (CAP; 250 mg/cattle/day). The study was conducted over a 60-day period.

View Article and Find Full Text PDF

Reactive astrogliosis and acidosis, common features of epileptogenic lesions, express a high level of astrocytic acid-sensing ion channel-1a (ASIC1a), a proton-gated cation channel and key mediator of responses to neuronal injury. This study investigates the role of astrocytic ASIC1a in cognitive impairment following epilepsy. Status epilepticus (SE) in C57/BL6 mice was induced using lithium-pilocarpine; the impact of ASIC1a on astrocytes was assessed using rAAV-ASIC1a-NC and rAAV-ASIC1a-shRNA, injected in the CA3 region of mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!