Disconnection of parietal and occipital access to the saccadic oculomotor system.

Exp Brain Res

Department of Anatomy and Cell Biology, SUNY-Health Science Center, Syracuse 13210.

Published: July 1988

The experiment explored the networks through which signals arising from visual areas of cortex control saccadic eye movements. Electrical stimulation of the inferior parietal and the occipital cortex (here termed the "posterior eye fields") normally evokes saccadic eye movements. We replicated previous reports that these evoked eye movements ceased after large tectal ablations. This initial finding suggested that the "posterior eye fields" depended on a single route of access to the saccade generator, one descending through the superior colliculus (SC). On closer examination, the critical lesion appeared to be one which removed the SC and cut efferents from the frontal eye field (FEF) coursing nearby. Subsequently we confirmed that eye movements evoked from the posterior eye fields ceased after cooling the SC, or cutting its efferents- but only when one of these procedures was combined with FEF ablation. Thus, visual signals from the occipital and inferior parietal cortex have more than one, but perhaps only two routes of access to the oculomotor system. One passes through the superior colliculus, the other through the frontal eye field. Ancillary experiments revealed that inferior parietal and FEF ablations, alone or combined, do not disrupt saccades evoked from the occipital lobe. Striate and prestriate areas can therefore use their own direct input to the SC or to the basal ganglia to drive saccadic eye movements.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00248363DOI Listing

Publication Analysis

Top Keywords

eye movements
20
saccadic eye
12
inferior parietal
12
eye
10
parietal occipital
8
oculomotor system
8
"posterior eye
8
eye fields"
8
superior colliculus
8
frontal eye
8

Similar Publications

A paediatric patient presented with periorbital oedema and fever. Initially, there was low suspicion for cavernous sinus thrombosis and orbital cellulitis due to the presence of full extraocular movements. However, given worsening bilateral periorbital oedema, lethargy and sepsis, neuroimaging was performed demonstrating inflammation and enhancement of the leptomeninges and left cavernous sinus, and raising concern for cavernous sinus thrombosis in the setting of orbital cellulitis.

View Article and Find Full Text PDF

Purpose: This study evaluates the effect of 6° horizontal gaze tolerance on visual field mean sensitivity (MS) in patients with glaucoma using a binocular head-mounted automated perimeter, following findings of structural changes in the posterior globe from magnetic resonance imaging and optical coherence tomography.

Methods: In this cross-sectional study, a total of 161 eyes (85 primary open-angle glaucoma [POAG] and 76 healthy) from 117 participants were included. Logistic regression and 1:1 matched analysis assessed the propensity score for glaucoma and healthy eyes, considering age, sex, and axial length as confounders.

View Article and Find Full Text PDF

Response preparation is accomplished by gradual accumulation in neural activity until a threshold is reached. In humans, such a preparatory signal, referred to as the lateralized readiness potential, can be observed in the EEG over sensorimotor cortical areas before execution of a voluntary movement. Although well-described for manual movements, less is known about preparatory EEG potentials for saccadic eye movements in humans and nonhuman primates.

View Article and Find Full Text PDF

Abnormal eye movements occur early in the course of disease in many ataxias. However, clinical assessments of oculomotor function lack precision, limiting sensitivity for measuring progression and the ability to detect subtle early signs. Quantitative assessment of eye movements during everyday behaviors such as reading has potential to overcome these limitations and produce functionally relevant measures.

View Article and Find Full Text PDF

People with amblyopia show deficits in global motion perception, especially at slow speeds. These observers are also known to have unstable fixation when viewing stationary fixation targets, relative to healthy controls. It is possible that poor fixation stability during motion viewing interferes with the fidelity of the input to motion-sensitive neurons in visual cortex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!