The rod photoreceptor outer segment maintains a remarkable morphology. Two of the proteins which have been implicated in the maintenance of this structure are the 240 kDa spectrin-like protein, and the 220 kDa glycoprotein often referred to as the rim protein. We have probed rat rod outer segment proteins with light-activated (azido-labeled) radioactive nucleotides and found a nucleotide binding site(s) on the rim protein which has a preference for guanine nucleotides. Binding to this site is stimulated by the divalent cations zinc, manganese and magnesium, but not calcium. This site is under investigation and may play a role in stabilizing protein structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0014-4835(88)80053-8 | DOI Listing |
Transl Vis Sci Technol
January 2025
Department of Ophthalmology, University Hospital Bonn, Bonn, Germany.
Purpose: To compare a novel high-resolution optical coherence tomography (OCT) with improved axial resolution (High-Res OCT) with conventional spectral-domain OCT (SD-OCT) with regard to their capacity to characterize the disorganization of the retinal inner layers (DRIL) in diabetic maculopathy.
Methods: Diabetic patients underwent multimodal retinal imaging (SD-OCT, High-Res OCT, and color fundus photography). Best-corrected visual acuity and diabetes characteristics were recorded.
Taiwan J Ophthalmol
December 2024
Shri Bhagwan Mahavir Vitreoretinal Services, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India.
The aim of this study is to describe genotype and phenotype of patients with bestrophinopathy. The case records were reviewed retrospectively, findings of multimodal imaging such as color fundus photograph, optical coherence tomography (OCT), fundus autofluorescence, electrophysiological, and genetic tests were noted. Twelve eyes of six patients from distinct Indian families with molecular diagnosis were enrolled.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
Two convex polyhedra that markedly resemble the head of the flatback sea turtle hatchling are identified. The first example is a zygomorphic tetragonal dodecahedron, while the other, an even better matching structure, is a related tetradecahedron, herein speculated to arise from this particular dodecahedron via known mechanisms gleaned from studies of the behavior of foams. A segmented, biomorphic, convex polyhedral model to address cephalic topology is thus presented stemming from solid geometry, anatomical observations, and a recently computed densest local packing arrangement of fifteen slightly oblate spheroids in which fourteen oblate spheroids surround a central such spheroid.
View Article and Find Full Text PDFOphthalmology
January 2025
University of Bordeaux, INSERM, BPH, U1219, F-33000 Bordeaux, France; FRCRnet, F-CRIN network, France.
Purpose: We assessed the associations of macular layer thicknesses, measured using spectral-domain OCT (SD-OCT), with incident age-related macular degeneration (AMD) and AMD polygenic risk scores (PRS).
Design: Population-based cohort study PARTICIPANTS: 653 participants of the Alienor study, with biennial eye imaging from 2009 to 2024.
Methods: Macular layer thicknesses of eight distinct layers and three compound layers were automatically segmented based on SD-OCT imaging of the macula.
J Craniofac Surg
January 2025
Division of Plastic and Reconstructive Surgery, The Warren Alpert Medical School of Brown University.
Background: Cranial defects from trauma, surgery, or congenital conditions require precise reconstruction to restore cranial vault integrity. Autogenous calvarial grafts are preferred for their histocompatibility and biomechanical properties, but their success depends on a well-developed diploic space. Although prior studies have described overall skull thickness development, less is known about how diploic thickness changes through adulthood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!