A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genetic interactions effects for cancer disease identification using computational models: a review. | LitMetric

Genome-wide association studies (GWAS) provide clear insight into understanding genetic variations and environmental influences responsible for various human diseases. Cancer identification through genetic interactions (epistasis) is one of the significant ongoing researches in GWAS. The growth of the cancer cell emerges from multi-locus as well as complex genetic interaction. It is impractical for the physician to detect cancer via manual examination of SNPs interaction. Due to its importance, several computational approaches have been modeled to infer epistasis effects. This article includes a comprehensive and multifaceted review of all relevant genetic studies published between 2001 and 2020. In this contemporary review, various computational methods are as follows: multifactor dimensionality reduction-based approaches, statistical strategies, machine learning, and optimization-based techniques are carefully reviewed and presented with their evaluation results. Moreover, these computational approaches' strengths and limitations are described. The issues behind the computational methods for identifying the cancer disease through genetic interactions and the various evaluation parameters used by researchers have been analyzed. This review is highly beneficial for researchers and medical professionals to learn techniques adapted to discover the epistasis and aids to design novel automatic epistasis detection systems with strong robustness and maximum efficiency to address the different research problems in finding practical solutions effectively.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11517-021-02343-9DOI Listing

Publication Analysis

Top Keywords

genetic interactions
12
cancer disease
8
computational methods
8
genetic
6
cancer
5
computational
5
interactions effects
4
effects cancer
4
disease identification
4
identification computational
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!