The high-drug-loaded sustained-release gastric-floating clarithromycin (CAM) tablets were proposed and manufactured via semisolid extrusion (SSE)-based 3D printing. The physical and mechanical properties, such as dimensions, weight variation, friability, and hardness, were accessed according to the quality standards of Chinese Pharmacopoeia (Ch.P). The interactions among the drug-excipients were evaluated via differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) techniques. Next, the rheological properties of the paste and the effect of the excipients and solvents were evaluated. Finally, a very high drug-loading of up to 81.7% (w/w) with the sustain release time of 8 h (125 mg) and 12 h (250 mg) was achieved. The results revealed the potential of SSE for achieving a high drug loading and identified the suitable properties of the paste for SSE-based 3D printing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1208/s12249-021-01994-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!