Intracranial pressure (ICP)-derived indices of cerebrovascular reactivity (e.g., PRx, PAx, and RAC) have been developed to improve understanding of brain status from available neuromonitoring variables. These indices are moving correlation coefficients between slow-wave vasogenic fluctuations in ICP and arterial blood pressure. In this retrospective analysis of neuromonitoring data from 200 patients admitted with moderate/severe traumatic brain injury (TBI), we evaluate the predictive value of CPPopt based on these ICP-derived indices of cerebrovascular reactivity. Valid CPPopt values were obtained in 92.3% (PRx), 86.7% (PAX), and 84.6% (RAC) of the monitoring periods, respectively. In multivariate logistic analysis, a baseline model that includes age, sex, and admission Glasgow Coma Score had an area under the receiver operating curve of 0.762 (P < 0.0001) for dichotomous outcome prediction (dead vs. good recovery). When adding time/dose of CPP below CPPopt, all multivariate models (based on PRx, PAx, and RAC) predicted the dichotomous outcome measure, but additional value of the prediction was only significantly added by the PRx-based calculations of time spent with CPP below CPPopt and dose of CPP below CPPopt.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-030-59436-7_35 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!