A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Environmental and biodiversity effects of different beef production systems. | LitMetric

Environmental and biodiversity effects of different beef production systems.

J Environ Manage

Free University of Bozen-Bolzano, Faculty of Science and Technology, Piazza Università 5, Bolzano, 39100, Italy.

Published: July 2021

Agricultural livestock production ranks among the most environmental impactful industry sectors at the global level, and within the livestock sector, beef production accounts for a large proportion of environmental damage. Beef production in Alpine mountain regions, such as in South Tyrol (Italy), is a small, but increasing agricultural sector. Thus, the aim of this study was to examine the environmental impact of different organic and conventional beef production systems in South Tyrol and to compare their environmental impact and effect on biodiversity under Alpine production conditions. Live cycle assessment (LCA) approach was used and 1 kg of live weight (LW) was chosen as functional unit (FU). Global warming potential (GWP, kg CO-eq), acidification potential (AP, g SO-eq), eutrophication potential (EP, g PO-eq), non-renewable energy use (NRE, MJ-eq), land occupation (LO, m organic land/year) and biodiversity damage potential (BDP) expressed in potential disappeared fraction (PDF) were investigated. The study involved 18 beef cattle farms in the South Tyrolean region: Conventional calf-fattening farms (CCF = 6), organic suckler cow farms (SCF = 6), and conventional heifer/ox fattening farms (HOF = 6). The CCF system showed a higher environmental impact compared to SCF and HOF systems for all impact categories (P < 0.05). Between the organic and the conventional system (SCF and HOF), no significant differences (P > 0.05) were found for most of the considered impact categories (means ± SEM per FU): GWP: 19.8 vs 17.1 ± 4.2 kg COeq, AP: 11.4 vs 9.3 ± 4.7 g SO-eq, EP: 4.1 vs 2.8 ± 1.2, NRE: 21.9 vs 13.8 ± 7 MJ-eq, SCF and HOF respectively. Only for LO (70.8 vs 44.1 ± 17.7 m organic/y, P < 0.01, SCF and HOF respectively) and the effect on BDP (-1.93 vs -0.85 ± 0.35, PDF, P < 0.01, SCF and HOF respectively) differences between organic and conventional production methods could be revealed. The study showed that beef cattle husbandry in the Alpine area has a satisfactory environmental performance. In particular, the systems studied showed a positive impact in terms of biodiversity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2021.112523DOI Listing

Publication Analysis

Top Keywords

beef production
16
environmental impact
12
production systems
8
south tyrol
8
scf hof
8
impact categories
8
environmental
6
production
6
beef
5
impact
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!