The present paper is dedicated to analyze non-hazardous kinetic behaviour and modelling of green synthesized cobalt nanocatalyst (CoNCs), using an Artificial Neural Network (ANN). In order to supplement the trace metal in other applications, CoNCs were rapidly synthesized with a Cobalt sulphate solution at room temperature between 30 and 35 ºC at pH 7.2 under less reaction time. The Levenberg - Marquardt algorithm (LM) is used to investigate the experimental values by applying ANN. The results of variance using logistic ANN model depicts that the maximum nanoparticles were synthesized at its optimized stipulation of 0.5 h stirring time, 25 mL volume of extract and 20 mL volume of cobalt sulphate. The developed ANN model proved to be an efficient size determining tool in the biosynthesis of cobalt nanocatalyst. Experimental behavior using potentiometric analysis confirms that the linearity in CoNCs formation and size coincides (5-38 nm)with the predicted values of the ANN model. Techno economic analysis proved that, green synthesis reduced 30-40% in raw material cost and 60% in energy consumption.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.125720DOI Listing

Publication Analysis

Top Keywords

cobalt nanocatalyst
12
ann model
12
artificial neural
8
neural network
8
green synthesis
8
synthesized cobalt
8
cobalt sulphate
8
cobalt
5
ann
5
application artificial
4

Similar Publications

Tannic acid (TA), as a plant polyphenol, has many active sites for chelation with metals, so TA-oligomers (TA-Olig) were used for the first time as ligands on the surface of Ce-Mn-LDH to prepare the layered double hydroxide-based metal-organic framework (Ce-Mn-LDH@CPTMS@TA-Olig@Co-MOF = E) nanocomposite. In this regard, a homogeneous water/ethanol solution was prepared by sol-gel method using polyethylene glycol and ammonia solution, and then TA was converted into a set of oligomers in the presence of formaldehyde. In the next step, Ce-Mn-LDH was prepared in a ratio of 1 : 4 of Ce to Mn, modified with 3-chloropropylmethoxysilane, functionalized by TA-Olig, and then cobalt salt was used to prepare E.

View Article and Find Full Text PDF

Optimizing the composition and structure of nanocatalysts is an efficient approach to achieving the top electrocatalytic performance. However, the construction of hollow nanocomposites composed of metal phosphides and highly conductive carbon to promote the electrocatalytic performance of metal phosphide-based catalysts is rarely reported. Herein, a CoFeP/C nanobox nanocomposite consisting of Co-Fe mixed-metal phosphides and N-doped carbon was successfully fabricated through an ion-exchange phosphidation strategy derived from ZIF-67 nanocubes.

View Article and Find Full Text PDF

Insights into the Removal of Organic Contaminants by Co-CeO Nanocatalysts via CaCO Activation: Performance, Kinetic, and Mechanism.

Langmuir

December 2024

Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China.

The advanced oxidation process based on S(IV) has garnered increasing attention, owing to its efficiency in degrading contaminants. Here, a cobalt-doped cerium oxide catalyst (Co-CeO) was employed to activate calcium sulfite (CaSO) for imidacloprid degradation. The Co-CeO catalyst was characterized by using SEM, BET, XRD, and XPS techniques to analyze its structural and chemical properties.

View Article and Find Full Text PDF

The intake of excessive ethanol will activate an alternative ethanol metabolic pathway in the liver, resulting in the overproduction of reactive oxygen species (ROS), which further leads to alcoholic liver injury (ALI). Although several molecular antioxidants have been utilized in clinics for treating ALI, their efficacies are still less satisfactory. In this work, a nanocatalytic antioxidation therapeutic strategy is proposed for ALI treatment by constructing amorphous Co(OH) nanosheets with catalytic antioxidative property.

View Article and Find Full Text PDF

It is still a challenge to develop hierarchically nanostructured catalysts with simple approaches to enhance the low-temperature catalytic activity. Herein, a set of mesoporous Co-Cu binary metal oxides with different morphologies were successfully prepared via a facile ammonium bicarbonate precipitation method without any templates or surfactants, which were further applied for catalytic removal of carcinogenic toluene. Among the catalysts with different ratios, the CoCu composite oxide presented the best performance, where the temperature required for 90% conversion of toluene was only 237°C at the high weight hour space velocity (WHSV) of 240,000 mL/(g·hr).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!