Trinucleotide repeat sequences (TRSs), consisting of 10 unique classes of repeats in DNA, are members of microsatellites and abundantly and non-randomly distributed in many eukaryotic genomes. The lengths of TRSs are mutable, and the expansions of several TRSs are implicated in hereditary neurological diseases. However, the underlying causes of the biased distribution and the dynamic properties of TRSs in the genome remain elusive. Here, we examined the effects of TRSs on nucleosome formation in vivo by histone H4-S47C site-directed chemical cleavages, using well-defined yeast minichromosomes in which each of the ten TRS classes resided in the central region of a positioned nucleosome. We showed that (AAT) and (ACT) act as strong nucleosome-promoting sequences, while (AGG) and (CCG) act as nucleosome-excluding sequences in vivo. The local histone binding affinity scores support the idea that nucleosome formation in TRSs, except for (AGG), is mainly determined by the affinity for the histone octamers. Overall, our study presents a framework for understanding the nucleosome-forming abilities of TRSs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2021.03.155 | DOI Listing |
Nat Commun
December 2024
Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
The CRISPR-associated endonuclease Cas9 derived from prokaryotes is used as a genome editing, which targets specific genomic loci by single guide RNAs (sgRNAs). The eukaryotes, the target of genome editing, store their genome DNA in chromatin, in which the nucleosome is a basic unit. Despite previous structural analyses focusing on Cas9 cleaving free DNA, structural insights into Cas9 targeting of DNA within nucleosomes are limited, leading to uncertainties in understanding how Cas9 operates in the eukaryotic genome.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Chemistry and Chemical Biology, Center for Quantitative Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA.
The dynamic organization of chromatin plays an essential role in the regulation of genetic activity, interconverting between open and compact forms at the global level. The mechanisms underlying these large-scale changes remain a topic of widespread interest. The simulations of nucleosome-decorated DNA reported herein reveal profound effects of the nucleosome itself on overall chromatin properties.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA.
8-oxoguanine (8-oxoG) is a common oxidative DNA lesion that causes G > T substitutions. Determinants of local and regional differences in 8-oxoG-induced mutability across genomes are currently unknown. Here, we show DNA oxidation induces G > T substitutions and insertion/deletion (INDEL) mutations in human cells and cancers.
View Article and Find Full Text PDFJ Oral Biosci
December 2024
Division of Anatomical and Cellular Pathology, Department of Pathology, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan. Electronic address:
Objective: This study aimed to evaluate the role of the chromodomain helicase DNA-binding protein 3 (CHD3) in tooth morphogenesis in Chd3 knockout mice.
Methods: Chd3 knockout mice were generated using the CRISPR-Cas9 method. Mandibular first molars were extracted from the mice and their littermates and morphometrically analyzed.
Methods Mol Biol
December 2024
School of Biosciences, University of Kent, Canterbury, Kent, UK.
DNA tightropes are a powerful single-molecule microscopy platform for the study of protein interactions with DNA on a single-molecule level. DNA molecules are suspended between two beads, granting full 3D access for a protein to bind and its interactions to be studied. Furthermore, tightropes can be custom-designed, permitting the study of protein interactions that are sequence- or substrate-dependent such as base mismatches or lesions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!