Oxidative stress is a deteriorating factor for pancreatic β-cells under chronic hyperglycemia in diabetes. However, the molecular mechanism underlying the increase in oxidative stress in β-cells under diabetic conditions remains unclear. We demonstrated previously that the selective alleviation of glucotoxicity ameliorated the downregulation of several β-cell factors, including Cox6a2. Cox6a2 encodes a subunit of the respiratory chain complex IV in mitochondria. In this study, we analyzed the role of Cox6a2 in pancreatic β-cell function and its pathophysiological significance in diabetes mellitus. Cox6a2-knockdown experiments in MIN6-CB4 cells indicated an increased production of reactive oxygen species as detected by CellROX Deep Red reagent using flow cytometry. In systemic Cox6a2-knockout mice, impaired glucose tolerance was observed under a high-fat high-sucrose diet. However, insulin resistance was reduced when compared with control littermates. This indicates a relative insufficiency of β-cell function. To examine the transcriptional regulation of Cox6a2, ATAC-seq with islet DNA was performed and an open-chromatin area within the Cox6a2 enhancer region was detected. Reporter gene analysis using this area revealed that MafA directly regulates Cox6a2 expression. These findings suggest that the decreased expression of Cox6a2 increases the levels of reactive oxygen species and that Mafa is associated with decreased Cox6a2 expression under glucotoxic conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2021.03.148DOI Listing

Publication Analysis

Top Keywords

cox6a2 expression
12
cox6a2
9
oxidative stress
8
β-cell function
8
reactive oxygen
8
oxygen species
8
glucotoxicity-induced suppression
4
suppression cox6a2
4
expression
4
expression provokes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!