Cyclase-associated protein (CAP) is a conserved actin-binding protein that regulates multiple aspects of actin dynamics, including polymerization, depolymerization, filament severing, and nucleotide exchange. CAP has been isolated from different cells and tissues in an equimolar complex with actin, and previous studies have shown that a CAP-actin complex contains six molecules each of CAP and actin. Intriguingly, here, we successfully isolated a complex of Xenopus cyclase-associated protein 1 (XCAP1) with actin from oocyte extracts, which contained only four molecules each of XCAP1 and actin. This XCAP1-actin complex remained stable as a single population of 340 kDa species during hydrodynamic analyses using gel filtration or analytical ultracentrifugation. Examination of the XCAP1-actin complex by high-speed atomic force microscopy revealed a tripartite structure: one middle globular domain and two globular arms. The two arms were observed in high and low states. The arms at the high state were spontaneously converted to the low state by dissociation of actin from the complex. However, when extra G-actin was added, the arms at the low state were converted to the high state. Based on the known structures of the N-terminal helical-folded domain and C-terminal CARP domain, we hypothesize that the middle globular domain corresponds to a tetramer of the N-terminal helical-folded domain of XCAP1 and that each arm in the high state corresponds to a heterotetramer containing a dimer of the C-terminal CARP domain of XCAP1 and two G-actin molecules. This novel configuration of a CAP-actin complex should help to understand how CAP promotes actin filament disassembly.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113726 | PMC |
http://dx.doi.org/10.1016/j.jbc.2021.100649 | DOI Listing |
BMC Cancer
January 2025
Department of Gynecology, East China Normal University Wuhu Affiliated Hospital (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
Objective: Neuroendocrine cervical carcinoma (NECC) is a rare but highly aggressive tumor. The clinical management of NECC follows neuroendocrine neoplasms and cervical cancer in general. However, the diagnosis and prognosis of NECC remain dismal.
View Article and Find Full Text PDFCell Mol Life Sci
November 2024
Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.
Formins are proteins that catalyze the formation of linear filaments made of actin. INF2, a formin, is crucial for correct vesicular transport, microtubule stability and mitochondrial division. Its activity is regulated by a complex of cyclase-associated protein and lysine-acetylated G-actin (KAc-actin), which helps INF2 adopt an inactive conformation through the association of its N-terminal diaphanous inhibitory domain (DID) with its C-terminal diaphanous autoinhibitory domain.
View Article and Find Full Text PDFCurr Opin Cell Biol
October 2024
Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA. Electronic address:
The dynamic actin cytoskeleton contributes to many critical biological processes by providing the structural support underlying the morphology of most cells, facilitating intracellular transport, and generating forces required for cell motility and division. To execute many of these functions, actin monomers polymerize into polarized filaments that display different structural and biochemical properties at each end. Filament dynamics are regulated by diverse regulatory proteins which collaborate to dictate rates of elongation and disassembly, particularly at the fast-growing barbed (plus) end.
View Article and Find Full Text PDFCell Mol Life Sci
August 2024
Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany.
Eur J Cell Biol
June 2024
Departments of Physics, Cell biology and Biochemistry, Emory University, Atlanta, GA 30322, USA. Electronic address:
Intracellular actin networks assemble through the addition of ATP-actin subunits at the growing barbed ends of actin filaments. This is followed by "aging" of the filament via ATP hydrolysis and subsequent phosphate release. Aged ADP-actin subunits thus "treadmill" through the filament before being released back into the cytoplasmic monomer pool as a result of depolymerization at filament pointed ends.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!