Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background And Aims: Lynch syndrome is associated with pathogenic variants in 4 mismatch repair (MMR) genes that increase lifetime risk of colorectal cancer. Guidelines recommend intensive colorectal cancer surveillance with colonoscopy every 1-2 years starting at age 25 years for all carriers of Lynch syndrome-associated variants, regardless of gene product. We constructed a simulation model to analyze the effects of different ages of colonoscopy initiation and surveillance intervals for each MMR gene (MLH1, MSH2, MSH6, and PMS2) on colorectal cancer incidence and mortality, quality-adjusted life-years, and cost.
Methods: Using published literature, we developed a Markov simulation model of Lynch syndrome progression for patients with each MMR variant. The model simulated clinical trials of Lynch syndrome carriers, varying age of colonoscopy initiation (5-year increments from 25-40 years), and surveillance intervals (1-5 years). We assessed the optimal strategy for each gene, defined as the strategy with the highest quality-adjusted life-years and incremental cost-effectiveness ratio below a $100,000 willingness-to-pay threshold.
Results: Optimal surveillance for patients with pathogenic variants in the MLH1 and MSH2 genes was colonoscopy starting at age 25 years, with 1- to 2-year surveillance intervals. Initiating colonoscopy at age 35 and 40 years, with 3-year intervals, was cost-effective for patients with pathogenic variants in MSH6 or PMS2, respectively.
Conclusions: We developed a simulation model to select optimal surveillance starting ages and intervals for patients with Lynch syndrome based on MMR variant. The model supports recommendations for intensive surveillance of patients with Lynch syndrome-associated variants in MLH1 or MSH2. However, for patients with Lynch syndrome-associated variants of MSH6 or PMS2, later initiation of surveillance at 35 and 40 years, respectively, and at 3-year intervals, can be considered.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9330543 | PMC |
http://dx.doi.org/10.1053/j.gastro.2021.04.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!