The chemiluminescence (CL) analysis based on label-free dual-aptasensor was developed for simultaneous detection of adenosine triphosphate (ATP) and chloramphenicol (CAP) in food. Magnetic microspheres and polystyrene microspheres used as separating and immobilizing carriers which immobilized the two different captured DNA, respectively. Then these carriers were put in the mixture of ATPs, CAPs, ATP-binding aptamers and CAP-binding aptamers to make one-pot label-free recognized interaction. The more ATP or CAP molecules binding their aptamers, the less aptamers left on the surface of carriers reducing the CL signals. The proposed aptasensor exhibited high selectivity and sensitivity for ATP and CAP with the limits of detection of 3.76 × 10 moL/L and 2.48 × 10 moL/L, respectively. Finally, this method is further validated by measuring the recovery of ATP/CAP spiked in three different food samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2021.122226 | DOI Listing |
Nat Commun
January 2025
Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
With advanced mass spectrometry (MS)-based proteomics, genome-scale proteome coverage can be achieved from bulk tissues. However, such bulk measurement lacks spatial resolution and obscures tissue heterogeneity, precluding proteome mapping of tissue microenvironment. Here we report an integrated wet collection of single microscale tissue voxels and Surfactant-assisted One-Pot voxel processing method termed wcSOP for robust label-free single voxel proteomics.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China. Electronic address:
ACS Sens
January 2025
Department of Chemistry, Faculty of Science, McGill University, Montreal, Quebec H3A 0B8, Canada.
We present a straightforward design approach to develop DNA-based light-up aptasensors. We performed the first systematic comparison of DNA fluorescent light-up aptamers (FLAPs), revealing key differences in affinity and specificity for their target dyes. Based on our analysis, two light-up aptamers emerged with remarkable specificity, fluorescence enhancement, and functionality in diverse environments.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan. Electronic address:
We developed a customizable OpenGUS immunoassay that enables rapid and sensitive detection of analytes without requiring antibody modification. This immunoassay employs label-free whole antibodies, an antibody-binding Z domain (ZD) derived from Staphylococcal protein A, and a β-glucuronidase (GUS) switch mutant, allowing for easy replacement of antibodies to tailor the immunoassays for various targeted antigens. The working principle is that the OpenGUS probe, the fusion protein of ZD and a GUS switch, converts the antibody-antigen interaction into GUS activation in a one-pot reaction.
View Article and Find Full Text PDFTalanta
January 2025
College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha, 410219, China. Electronic address:
The capability to detect a small number of miRNAs in clinical samples with simplicity, selectivity, and sensitivity is immensely valuable, yet it remains a daunting task. Here, we described a novel Mango II aptamers-based sensor for the one-pot, sensitive and specific detection of miRNAs. Target miRNA-initiated mediated catalyzed hairpin assembly (CHA) would allow for the production of plenty of DNA duplexes and the formation of the complete T7 promoter, motivating the rolling circle transcription (RCT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!